
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Ensemble Learning for Multi-type Classification
in Heterogeneous Networks
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Abstract—Heterogeneous networks are networks consisting of different types of objects and links. They can be found in several fields,
ranging from the Internet to social sciences, biology, epidemiology, geography, finance and many others. In the literature, several
methods have been proposed for the analysis of network data, but they usually focus on homogeneous networks, where all the objects
are of the same type, and links among them describe a single type of relationship. More recently, the complexity of real scenarios has
impelled researchers to design methods for the analysis of heterogeneous networks, especially focused on classification and clustering
tasks. However, they often make assumptions on the structure of the network that are too restrictive or do not fully exploit different
forms of network correlation and autocorrelation. Moreover, when nodes which are the main subject of the classification task are linked
to several nodes of the network having missing values, standard methods can lead to either building incomplete classification models
or to discarding possibly relevant dependencies (correlation or autocorrelation). In this paper, we propose an ensemble learning
approach for multi-type classification. We adopt the system Mr-SBC, which is originally able to analyze heterogeneous networks of
arbitrary structure, within an ensemble learning approach. The ensemble allows us to improve the classification accuracy of Mr-SBC by
exploiting i) the possible presence of correlation and autocorrelation phenomena, and ii) the classification of instances (which contain
missing values) of other node types in the network. As a beneficial side effect, we have also that the models are more stable in terms of
standard deviation of the accuracy, over different samples used for training. Experiments performed on real-world datasets show that
the proposed method is able to significantly outperform the standard implementation of Mr-SBC. Moreover, it gives Mr-SBC the
advantage of outperforming four other well-known algorithms for the classification of data organized in a network.

Index Terms—Heterogeneous networks, ensemble learning, multi-type classification
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1 INTRODUCTION

In the real world we can easily find objects which ap-
pear to be connected to each other, thus forming complex
networks. Connections among these objects can represent
different types of relationships and interactions, which can
be found in several fields, including biology, epidemiology,
geography, finance, and many others. Most of the works in
the literature about mining networked data focus on homo-
geneous networks, where all the objects are of the same type
(and can, accordingly, be represented by a predefined set of
features/characteristics) and the links among them describe
a single type of relationship. A common example of a ho-
mogeneous network can be found in social networks, where
objects represent people and links represent the friendship
relationship among them. However, real scenarios are more
complex due to the presence of multiple types of objects
that are connected through different types of links, form-
ing heterogeneous information networks. For example, in
well-known databases about movies (e.g., IMDb) we have
movies, actors, users, tags, etc. In the bio-medical domain,
databases contain genes, proteins, tissues, pathways and
diseases. In databases about reviews of travel-related con-
tent or about local businesses (e.g. TripAdvisor, Yelp), we
can find activities, users, reviews. In all these cases, objects
of different types establish different types of relationships.

Consequently, recent works have proposed new data
mining methods that work on heterogeneous information
networks. For example, in [1] and [2] the authors propose
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new clustering solutions, whereas in [3] and [4] the authors
propose classification/prediction methods. Other methods
that were initially proposed for relational data can be almost
directly applied for the analysis of heterogeneous informa-
tion networks [5]. However, existing methods (see Section 2
for a comprehensive overview) suffer from one or more of
the following limitations:

1) Network structure. They impose strict restrictions
on the structure of the network (e.g., star-structured
networks, bi-typed networks, etc.), which often is
not sufficient to represent real-world scenarios;

2) Network autocorrelation. Although they are gener-
ally able to exploit the network structure, in order to
capture some forms of correlation among different
attributes, they are not able to take into account
(and possibly exploit) one of the main peculiarities
of network data, i.e. the presence of different forms
of autocorrelation (see [6] and [7]). In particular, in a
network, this implies that the value of an attribute at
a given node may depend on the values of the same
attribute of the nodes it is directly or indirectly con-
nected with. When this phenomenon occurs among
class labels, it becomes even more relevant, since
capturing it means being able to exploit such de-
pendencies to improve the classification accuracy.

3) Missing values. They are not able to consider the
possible presence of missing values for some at-
tributes, which can lead to either learning incom-
plete classification models or to discarding possi-
bly relevant dependencies. This issue is commonly

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2018.2822307

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

faced by either ignoring the value of those attributes
or by replacing missing values with some com-
puted/predicted values, usually obtained by simple
aggregation functions (e.g., average or mode, com-
puted over the same attribute of the other objects).

4) Multi-type classification. In some cases we could
be interested in classifying objects of different types,
where each type can be associated with a different
set of possible labels. This task can be considered a
generalization of the standard “multi-target classifi-
cation” task [8]. The difference is that, in our case,
objects to be classified belong to different types.
Most methods are not able to solve this task (i.e.,
to predict the labels for all the object types simulta-
neously), but have to consider several independent
classification tasks. More recent works which over-
come this limitation [4], however, assume a common
set of possible labels for every type of object.

In this paper, we propose a classification method which
takes into account all these issues. In particular, the pro-
posed method works on heterogeneous networks with arbi-
trary structures and is able to capture both correlation and
autocorrelation phenomena which involve the target objects
(i.e., objects which are the main subject of the classification
task). Moreover, we aim at exploiting the same strategy
to predict possibly relevant missing values belonging to
other objects, appearing strongly related to the target ob-
jects. Methodologically, we extend the method Mr-SBC [9],
which is only able to deal with issue 1 (it can potentially
analyze networks of arbitrary structures), in order to also
capture network autocorrelation phenomena (issue 2), han-
dle relevant missing values (issue 3) and perform multi-type
classification (issue 4). These last three issues are tackled by
resorting to a combined bagging-boosting ensemble learn-
ing solution able to exploit information conveyed by objects
(also of the same type) directly or indirectly connected to
the main subject(s) of the classification task. The way we
generate and use the ensemble allows us to naturally take
into account the following properties of network data:

• The value of an attribute of an object may depend
on the values of the other attributes of the same object
or of other objects of any type, directly or indirectly
connected to it (network correlation);

• The value of an attribute of an object may depend on
the value of the same attribute of other objects of the
same type, (indirectly) connected to it (autocorrelation);

• The value of an attribute (also the class attribute)
could depend on the attributes of connected objects
of any type, whose value is initially unknown.

Specifically, we propose two extensions of the Mr-SBC al-
gorithm. The first is able to work with networks of arbitrary
structures (issue 1) and to capture network autocorrelation
(issue 2). The second also aims at handling relevant missing
values and multi-type classification (issues 3 and 4):

• ST-MrSBC (Self-Training MrSBC), which is able
to capture possible autocorrelation phenomena by
resorting to a variant of the self-training method. In
this case, the ensemble consists of the classifiers built
over all the iterations of the self-training approach.

• MT-MrSBC (Multi-Type MrSBC), which iteratively
analyzes objects of multiple types, in order to predict
possible missing values. These missing values can
belong either to the target type of the main classi-
fication task or to some other object types that are
strongly related to the main classification task. In
this case, we build an ensemble of classifiers for
each target type, which is able not only to catch
autocorrelation phenomena, but also dependencies
among different types, since each classifier will be
built also on the basis of the predictions obtained for
other target types in the previous iterations.

It is noteworthy that we consider the network classification
task according to the within-network setting [10]: objects for
which the class is known are linked to objects for which the
class must be estimated [11] (which can be either the subject
of the main classification task or other objects related to
the main classification task). This setting is semi-supervised
and differs from the across-network setting (considered in
the original Mr-SBC), where the problem is learning from
one (labeled) network and applying the learned models to a
separate, presumably similar network (see [12] and [7]).

The semi-supervised solution, in addition to allowing
the classification phase to take advantage of both labeled
and unlabeled examples, leads to smooth predictions. In
fact, the idea of the popular semi-supervised smoothness
assumption (valid in semi-supervised learning) is to smooth
the prediction function in highly populated regions. It states
that if two points xi and xj in a high density region are close,
then also their outputs yi and yj should be close [13]. In
multi-type classification we add an additional mechanism
to smooth the prediction function: capturing relationships
among objects of different types and, specifically, capturing
relationships among labels associated to objects of different
types introduces some forms of correlation among labels,
with the result of smoothing predictions on different types
of objects. In fact, the semi-supervised setting, combined
with the ensemble learning approach and the multi-type
classification, provides a solution for the problem of marked
discontinuities of the prediction function, consequently pro-
viding, in principle, simpler models with less overfitting.

In the following section, we report some details about
the work related to the present paper. In Section 3, we
report some background notions and introduce the system
Mr-SBC. In Sections 4 and 5 we describe the proposed
framework and its time complexity, while in Section 6 we
show the results obtained on some real-world datasets with
both the considered variants of Mr-SBC and with some
competitor systems. Finally, in Section 7 we draw some
conclusions and introduce possible future work.

2 RELATED WORK

The method we propose has its roots in the research areas
of network data classification and multi-target prediction. In
the following, we discuss some related work in both areas.

2.1 Network data classification
In the literature, several approaches have been proposed for
network classification. Most of them work in the within-
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network setting, that is, they model a partially labeled net-
work and provide estimates of labels for unlabeled nodes.
These approaches have been studied in the research fields
of collective inference (see [11], [14], [15] and [16]), active
inference (see [17]), semi-supervised and transductive infer-
ence (see [18], [19] and [20]). All these approaches, however,
are designed to work with homogeneous networks. Only
recently some works have started to consider the hetero-
geneity of nodes and links in the networks. For instance,
[4] considers a transductive classification task on heteroge-
neous networks. In particular, the authors propose a graph-
based regularization framework, called GNetMine, which
models the link structure in arbitrary information networks.
GNetMine considers each graph associated with each type
of link separately and aims at preserving its consistency.
However, in GNetMine, class labels are associated with
heterogeneous sub-networks. This means that the set of
possible class values is common among all the objects, inde-
pendently of their type. Although such a characteristic may
appear reasonable in many domains, it cannot model those
(more general) situations in which different classification
schemes should be defined for each type of object.

In [21], the authors proposed the algorithm HENPC,
which is able to solve multi-type classification tasks on het-
erogeneous networks. In particular, it extracts possibly over-
lapping and hierarchically-organized heterogeneous clus-
ters and exploits them for predictive purposes.

The method proposed in [3] combines ranking and clas-
sification tasks on the basis of the intuition that highly-
ranked objects within a class should play more important
roles in classification or, vice versa, that class membership
information is important for determining a good ranking
over a dataset. Accordingly, a ranking-based iterative classi-
fication framework, called RankClass, is proposed. At each
iteration, a graph-based ranking model is built and, on the
basis of the current ranking results, the graph structure is
adjusted, so that weights of the links in the subnetwork,
corresponding to each specific class, are strengthened, while
weights of the links in the rest of the network are weakened.
Although experiments show the advantages of combining
ranking and classification, as in [4], a single classification
scheme can be associated with all the types of object.

Recently, in [22] the authors proposed a collective clas-
sification approach which aims at classifying objects of the
same type in a heterogeneous network, based on the concept
of meta-path. A meta-path is a path, between two objects to
be classified, consisting of a sequence of link types. This
concept is used to effectively assign labels to a group of
interconnected instances, by taking into account different
meta-path-based dependencies. Classification is probabilis-
tic and is based on feature values of the object to be classi-
fied, on meta-paths, on “relational features” associated with
meta-paths, as well as on the labels associated with objects
traversed in the meta-paths. In this way, the proposed model
is able to capture the subtlety of different dependencies
among instances, with respect to different meta-paths. Al-
though similar to ours, this approach is specifically designed
to classify objects of a single type, similarly to the classical
classification problem in relational data mining.

In the latter context, many approaches have been pro-
posed in the literature, which can be considered relevant

competitors for the task considered in this paper and that
we have already introduced in Section 1. For example, the
system Mr-SBC [9], on which the method proposed in this
paper is based, adopts the naı̈ve Bayes classification method
in the multi-relational setting. This system exploits: i) first-
order classification rules for the computation of the posterior
probability for each class; ii) both discrete and continuous
attributes by applying a supervised discretization method;
iii) knowledge on the data model (i.e., the database schema)
during the generation of classification rules. More recently,
in [23] the authors introduced the tool RelWEKA, which
extends the WEKA toolkit with the multi-relational version
of classical data mining algorithms (e.g., k-NN and SVMs).

2.2 Multi-target prediction

The construction of different (possibly related) prediction
models from the same dataset has received particular at-
tention in the area of Structured Output Prediction (SOP).
Specifically, multi-target prediction (more classification than
regression) is related to our research, since, in such a task,
we have several target attributes associated to the same type
of object, with a different domain for each target attribute. In
multi-type prediction, the difference is that different target
attributes do not necessarily belong to the same object type.

The simplest approach to multi-target prediction is to
consider it as multiple single-target prediction tasks and
then apply a standard predictive algorithm on each of the
single-target tasks (i.e., construct local models). Within this
approach, it is possible to use any classification/regression
method to obtain the local predictive models and then com-
bine their outputs to obtain the predictions for the multiple
target variables. Alternatively, global methods predict the
complete structure as a whole. The global methods have
several advantages over the local methods. One of the most
important advantages is that they exploit the dependencies
that exist between the components of the structured output
in the model learning phase, which can give better predic-
tive performance. For example, in [8] the authors propose
an ensemble (either based on bagging or random forests)
of predictive clustering trees and show that multi-target
classification outperforms its single-target counterpart.

This is true also for other predictive modeling tasks:
multi-target regression and hierarchical multi-label classifi-
cation. However, most of the works in the literature focus on
multi-target regression (MTR) task rather than multi-target
classification. Although MTR aims at predicting real values
instead of discrete class values, the underlying concepts and
methods are very similar to those applicable to multi-target
classification. For this reason, in the following we give a
brief overview of the works on the MTR task.

In [24], the authors consider two groups of methods for
MTR: problem transformation and algorithm adaptation,
which correspond to local and global methods for Structure
Output Prediction. As for global methods, in [25] the au-
thors extend the standard ridge regression to multivariate
ridge regression, while in [26] the authors propose the
Curds&Whey method, where relations among the tasks are
modeled in a post-processing phase. More recently, some
authors have investigated kernel/SVM-based methods for
MTR. For example, in [27] the authors extend the kernel
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methods to the multi-target setting, using a particular type
of kernel. In [28], the authors propose an approach to define
the loss functions on the output manifold by considering
it as a Riemannian submanifold, in order to include its
geometric structure in the learning (regression) process. This
approach can be used with any regression algorithm.

A different approach is the adaptation of methods for
Multi Label Classification (MLC) towards the task of MTR.
In [29], the authors present an ensemble method that con-
structs new target variables via random linear combinations
of existing targets. The augmented output space is then
exploited by adapting the MLC algorithm RAkEL for MTR.

Due to its background on naı̈ve Bayes approaches, the
method proposed in this paper has also some aspects in
common with works that adopt general graphical models.
An example can be found in [30], where the authors propose
the “double dependent-variable factor graph” to predict
simultaneously the age and the gender of users (i.e., features
of a single node type) from a large network representing
mobile communication activities. Another example can be
found in [31], where the authors aim at inferring node labels
in a partially labeled homogeneous network, where each
node has multiple label types, each with a large number
of possible values. In particular, the authors propose the
method EDGEEXPLAIN, which is able to represent and
catch interactions between properties of label types.

Focusing on the ensemble-based approaches, in [32] the
authors propose the adoption of two methods, that are:
stacked single-target regression and ensemble of regressor
chains. The former corresponds to the binary relevance
approach with the addition of meta-models that exploit the
estimated values of the other target variables. The latter
corresponds to the classifier chains method for MLC [33],
which selects a random chain (permutation) of the target
variables and builds a predictive model for each target by
considering the predictions of the targets earlier in the chain.
The ensemble is constructed by multiple random selections
of the chains. This last approach also inspired the iterative
framework that we present in Section 4.

3 PROBLEM STATEMENT AND BACKGROUND

Before describing the proposed method, in the following we
introduce the notation used. In particular, as stated in the
introduction, we work on heterogeneous networks, which
we formally define as G = (V,E), where V is the set of
nodes and E is the set of edges among nodes. Both nodes
and edges can be of different types. Moreover:

• Each node type Tp implicitly defines a subset of
nodes Vp ⊆ V .

• Each node v′ ∈ V is associated with a node type
tv(v

′) ∈ T , where T is the finite set {Tp} of all the
possible types of nodes in the network.

• A node type Tp defines a set of attributes Xp =
{Xp,1, Xp,2, . . . , Xp,mp}.

• An edge type Rj defines a subset of edges Ej ⊆
(Vp × Vq) ⊆ E, where Vp and Vq are not necessarily
based on different types.

• An edge e between two nodes v′ and v′′ is associated
with an edge type Rj ∈ R, where R is the finite set
{Rj} of all the possible edge types in the network.

Fig. 1. An example of a heterogeneous network. The shape indicates the
type of nodes: triangles and circles are nodes of target types (primary
or secondary), and can be labeled (green) or unlabeled (white). Gray
nodes belong to task-relevant types.

Formally, e = 〈Rj , 〈v′, v′′〉〉 ∈ E, where Rj = te(e) ∈
R is its edge type.

In the considered task, we define a role for each node type.
In particular, we partition the set of node types T into:

• Tt (primary targets), which are considered as the
targets of the main classification task;

• Tst (secondary targets), which are strongly related to
the main classification task, for which a prediction of
missing values is considered relevant;

• Ttr (task-relevant), which are the other node types.

An example of a heterogeneous network having nodes of
different types with different roles is reported in Figure 1.

Only nodes of target (primary and secondary) types are
actually classified, on the basis of all the nodes. However, we
are actually interested in the maximization of the prediction
accuracy only of objects of the primary target types.

The method we propose iteratively builds an ensemble
of Mr-SBC [9] classifiers. For this reason, in the following
subsection we report some details about this system.

3.1 The system Mr-SBC
Mr-SBC is a naı̈ve Bayes classifier which is able to work
on data stored in a relational database. It relies on a set
of first-order rules induced from data stored in the tables
belonging to the relational schema. Consequently, it can
analyze heterogeneous networks of arbitrary structure, by
representing them in a relational database, where:

• each table corresponds to a node type in the network;
• each foreign key constraint represents an edge type

in the network;
• each tuple represents a node in the network;
• the attributes of each table represent the attributes

associated with each node type.

More formally, let T = {T1, T2, . . . , Tn} be the set of
tables for Mr-SBC and let Tt ∈ Tt be the considered
target type (in multi-type classification we can have sev-
eral target types). An instance v′, such that tv(v′) = Tt,
is represented as a tuple in the target table according to
its attributes Xt = {Xt,1, Xt,2, . . . , Xt,mt

}, joined with all
the tuples which are related to v′ following a foreign key
path. A foreign key path is defined as an ordered sequence
of tables (Ti1 , Ti2 , . . . , Tis), where: ∀j=1,...,s Tij ∈ T and
∀j=1,...,s−1 Tij+1

has a foreign key to the table Tij . A formal
definition of the learning problem solved by Mr-SBC is:
Given:

• A labeled network G represented by means of n
relational tables T = {T1, T2, . . . , Tn} of a relational
database D, built from the network G;
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• A set of primary key constraints on tables in T ;
• A set of foreign key constraints on tables in T ;
• A target table Tt ∈ Tt;
• A target discrete attribute y belonging to Tt, different

from the primary key of Tt, with values in Yt.

Find: a set of first-order rules RD from the database D and
build a naı̈ve Bayesian classifier ψt : Vt → Yt, which is able
to classify all the unlabeled tuples in Tt, according to RD .

It is noteworthy that Mr-SBC is not able to classify multi-
ple types of objects, therefore the set of primary target types
is limited to only one type, and the concept of secondary
target types is not considered (thus not exploited). Another
relevant limitation of Mr-SBC is that, in its original version,
it explores paths where each foreign key is considered
only once. This constraint is known in the literature as
the “acyclicity constraint”. However, as observed in [34],
the acyclicity constraint hinders the representation of many
important relational dependencies and, in particular, affects
the possibility to capture some relevant autocorrelation
phenomena. A simple example can be found in the biblio-
graphic data, where multiple authors collaborate in writing
a paper. By considering the table “authors” as the target ta-
ble, the algorithm would not be able to exploit co-authorship
relationships, since it would not be able to consider the path
“authors” - “papers” - “authors”, following the same foreign
key “write”. To overcome this limitation, we modified Mr-
SBC, in order to also take into account cyclic paths.

In the following, we report some details about the main
steps of Mr-SBC, that are the generation of rules and their
exploitation for classification.

3.1.1 Generation of first-order rules

In the literature, we can find several studies on first-order
naı̈ve Bayes classifiers. In particular, in [35], the authors
proposed a method based on a two-stepped process. The
first step uses the ILP-R system [36] to learn a hypothesis in
the form of a set of first-order rules and then, in the second
step, the rules are probabilistically analyzed. During the
classification phase, the conditional probability distributions
of individual rules are combined naı̈vely, according to the
naı̈ve Bayesian formula. It is noteworthy that the approach
adopted by the system ILP-R is very expensive and does not
take into account the bias automatically determined by the
constraints in the database. In [37], the authors proposed a
similar two-stepped method. In this case, there is no learn-
ing of first-order rules in the first step. On the contrary, the
method generates a set of patterns (first-order conditions)
that are used afterwards as attributes in a classical attribute-
value naı̈ve Bayesian classifier. This method distinguishes
between structural predicates, referring to parts of objects
(e.g., authors of a paper), and properties applying to the
objects or to one or several of its parts (e.g., the title of a
paper). An elementary first-order feature consists of zero or
more structural predicates and one property.

The solution adopted in Mr-SBC is similar to that pro-
posed in [37], since the structure of classification rules is
determined on the basis of the structure of the objects.
The main difference is in the use of the rules, since Mr-
SBC considers the contribution of every predicate only once

in the computation of the probabilities, even if they are
common to many rules (factorization of atoms rules [38]).

The predicates in the classification rules generated by
Mr-SBC are binary and can be of two different types:

• structural predicates, which are associated to a table
Ti if a foreign key in Ti exists that references a table
Tj . The first argument of the predicate represents
the primary key of Tj , while the second argument
represents the primary key of Ti.

• property predicates, which are associated to a table
Ti. The first argument of the predicate represents
the primary key of Ti, while the second argument
represents another attribute in Ti which is neither
the primary key of Ti nor a foreign key in Ti.

A first-order classification rule associated to the foreign key
path is a clause in the form:

p0(A1, y) :- p1(A1, A2), . . . , ps−1(As−1, As), ps(As, c),

where: p0 is a property predicate associated to the target
table and to the target attribute y; (Ti1 , Ti2 , ..., Tis) is a
foreign key path such that, for each k = 1, ..., s − 1, pk is
a structural predicate associated to the table Tik ; and ps is a
property predicate associated to the table Tis .
Rules are generated by means of a breadth-first strategy
which starts from the target table. Generated rules are then
refined by exploiting possible foreign key paths, that is, each
refining step is performed only if the generated first-order
classification rule can be associated with a foreign key path.
Moreover, the number of refinement steps is upper bounded
by a user-defined parameter maxlen. An example of a rule
associated with a foreign key path is the following:
business type(A,Restaurants) :- location(A,B),
location type(B, city), provides(A,C), goods type(C, food)

3.1.2 Computation of Probabilities
Let RD be the set of first-order classification rules for all the
classes Yt, and v′ be an object of the current target type to be
classified. The label to assign to v′ is computed by exploiting
Bayes theorem, according to the following equation:

ψt(v
′) = argmaxcP (Yc|Rv′) = argmaxc

P (Yc) · P (Rv′ |Yc)
P (Rv′)

,

(1)
where:

• Yc ∈ Yt is a possible class value of the attribute y;
• Rv′ ⊆ RD is the subset of first-order rules covering

the object v′, that is: Rv′ = {ri ∈ RD|ri covers v′}.
According to the naı̈ve Bayes assumption, Mr-SBC considers
the attributes independent. This assumption is clearly vio-
lated for the attributes that are primary keys or foreign keys.
This means that the computation of P (Rv′ |Yc) in Equation
(1) depends on the structures of rules in Rv′ . For instance,
assume that two rules R1 and R2, related to class Yc, share
the same structure and differ only in the property predicates
in their bodies:

R1 : β1,0 :- β1,1, ..., β1,K1−1, β1,K1 , R2 : β2,0 :- β2,1, ..., β2,K1−1, β2,K2 ,

where K1 = K2, ∀i=1,k1−1β1,i = β2,i and β0,1 = β0,2 = Yc.
Then:

P (β1,K1 ∧ β2,K2 |β1,0 ∧ β2,0 ∧ (β1,1, ..., β1,K1−1) ∧ Yc) =
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P (β1,K1
|(β1,1, ..., β1,K1−1) ∧ Yc) · P (β2,K2

|(β1,1, ..., β1,K1−1) ∧ Yc).
(2)

Contrary to [35] and [37], following this approach, Mr-SBC
is able to avoid multiple computations of the probability of
the structure. In particular, we can compute the numerator
of Equation (1) by generalizing the described approach to
the set of classification rules Rv′ as follows:

P (Yc) ·P (Rv′ |Yc) = P (Yc) ·P (struct) ·
∏

Rj∈Rv′

P (Rj |struct),

(3)
where the term struct takes into account the class Yc and the
structure of the rules in Rv′ .

All the factors used in Equation (3) and its expansion (see
Equations (4) and (6)) represent the naı̈ve Bayesian model
for each class label Yc and for a single target type. The
way these terms are used and estimated in the approach
presented in this paper depends on the ensemble learning
strategy adopted (and discussed in Section 4).
Computation of P(Rj | struct). If a classification rule Rj ∈
Rv′ is in the form βj,0 :- βj,1, ..., βj,Kj−1, βj,Kj , where βj,0
and βj,Kj are property predicates and βj,1, βj,2, ..., βj,Kj−1
are structural predicates, then we can compute the term
P (Rj |struct) of Equation (3) as follows:

P (Rj |struct) = P (βj,Kj
|βj,0, βj,1, ..., βj,Kj−1)

= P (βj,Kj
|Yc, βj,1, ..., βj,Kj−1), (4)

where Yc is the value of the target attribute in the head of the
clause (βj,0). In order to avoid null probabilities in Equation
(3), Mr-SBC exploits the Laplace estimation:

P (βj,Kj |Yc, βj,1, ..., βi,Kj−1) =
#(βj,Kj

,Yc,βj,1,...,βj,Kj−1)+1

#(Yc,βj,1,...,βj,Kj−1)+F
,

(5)
where F is the number of possible values of the attribute the
βj,Kj property predicate is associated with. It is noteworthy
that the numerator of Equation (5) is the number of tuples
covered by the rule βj,0 :- βj,1, ..., βj,Kj−1, βj,Kj , which can
be efficiently computed by a “select count (*)” SQL instruc-
tion. The value at the denominator is the number of tuples
covered by the rule βj,0 :- βj,1, ..., βj,Kj−1.
Computation of P(struct). Let B={(βj,1,βj,2,. . . ,βj,t)| j=1, 2,
. . . s and t=1, ...,Kj − 1} the set of all the distinct sequences
of structural predicates in the rules of Rv′ . Then:

P (struct) =
∏
seq∈B

P (seq). (6)

To compute P (seq), Mr-SBC exploits the definition of
the probability JP that a join query is satisfied [39]. Let
(Ti1 , Ti2 , . . . , Tis) be a foreign key path, then:

JP (Ti1 , Ti2 , . . . , Tis) =
| . /(Ti1 × Ti2 ...× Tis)|
|Ti1 | × |Ti2 | × ...× |Tis |

,

where . / (Ti1 × Ti2 × . . . × Tis) is the result of the join
between the tables Ti1 , Ti2 , . . . , Tis .

It is noteworthy that each sequence seq =
(βj,1, βj,2, . . . , βj,t) is associated with a foreign key
path. P (seq) can be recursively computed by observing
that there could be a prefix of seq in B. In particular, by
denoting the table related to βj,h as Tjh (h = 1, 2, . . . , t), the
probability P (seq) is computed as:

P (seq) =


JP (Tj1 , Tj2 , ..., Tjt) if seq has no prefix in B

JP (Tj1
,Tj2

,...,Tjt )

P (seq′) if seq′ is the longest prefix of seq in B

This formulation is necessary in order to compute Equation
(6) considering both dependent and independent events.
Since P (struct) takes into account the class, P (seq) is
computed separately for each class.

4 THE PROPOSED ENSEMBLE LEARNING METHOD

In this section we describe the solution we propose to solve
the considered classification task on data organized in a
heterogeneous network. As already stated in Section 1, the
proposed method is based on an ensemble of Mr-SBC [9]
classifiers, which is able to take into account additional
aspects of the network data: i) the dependencies among
different attributes of possibly different nodes (network
correlation); ii) the existence of dependencies among values
of the same attribute of different nodes (network autocorre-
lation); iii) the existence of dependencies between the class
label of the nodes which are subject of the main classification
task and attributes belonging to nodes of other types, whose
value is unknown. In particular, we propose two different
variants: ST-MrSBC, which exploits self-training techniques
in order to capture the aspects i) and ii), and MT-MrSBC,
which also classifies objects of other types, that are not
the subject of the main classification task. Therefore, this
solution captures all the considered aspects i), ii) and iii).

These two solutions share several choices (see the iter-
ative high-level description of the algorithm in Figure 2).
Both ST-MrSBC and MT-MrSBC take as input a partially la-
beled heterogeneous network and work iteratively. At each
iteration, they build an ensemble of classifiers from different
subsets of labeled nodes (either known or predicted in the
previous iterations), whose combination of the output will
possibly lead to a stronger prediction model.

In the case of MT-MrSBC, following the idea adopted
in [33] (for multi-label classification tasks), we shuffle all
the primary and secondary target types. MT-MrSBC then
performs a sampling of a subset of nodes of the first target
type (which can be either primary or secondary) and builds
a weak1 predictive model through Mr-SBC. This predictive
model is applied to classify unlabeled nodes which are then
added to the labeled network. The obtained probabilities are
also stored for the final combination of the outputs (see the
last step of the algorithm in Figure 2). Then, according to the
(random) ordering defined over the target types, we select a
new target type and repeat the process. It is noteworthy that,
at this stage, predictions performed for the previous target
types are available to Mr-SBC when building a prediction
model for the new target. Target types are shuffled again
every time they are all processed. The number of iterations
is limited by a user-defined threshold and the outputs
obtained for each target type over all the iterations are
combined to obtain the final (strong) predictive model.

ST-MrSBC uses a similar process, but works on a single
target type. Therefore, it exploits predictions obtained on the

1. It is considered a weak prediction model, since built from a
reduced subset of labeled instances.
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Fig. 2. High-level description of ST-MrSBC and MT-MrSBC.

same target type in the previous iterations when building a
prediction model for new iterations. The main difference
with respect to the standard self-training method is in the
construction of the labeled network when a new iteration
starts. Specifically, ST-MrSBC actually builds an ensemble
of weak classifiers from different subsets of labeled nodes,
instead of considering only the output of the last iteration.

4.1 Definition of target types
As already discussed, at each iteration, the algorithm can
work on different target attributes (and types). In ST-MrSBC,
this property is not exploited since it works on a single
target type, which represents the subject of the classification
task. Contrarily, MT-MrSBC needs the set of primary target
types Tt and the set of secondary target types Tst. We
recall that primary target types are those for which we are
interested in maximizing the classification accuracy of their
target attribute, since they are the subject of the main clas-
sification task. Objects belonging to secondary target types
are those that still have a target attribute and, if predicted,
this attribute could possibly lead to an improvement in the
classification of objects of the primary target types.

Once these two sets are defined, we build the list Lt
which contains the union of primary and secondary target
types. This list represents the order according to which,

in MT-MrSBC, target attributes (and types) are processed.
The order of target types in Lt is defined randomly. The
choice of a random ordering is motivated by the fact that
a predefined ordering of the analysis of target types can
negatively affect the classification accuracy, since a wrong
decision can inhibit the exploitation of relevant dependen-
cies and, consequently, can possibly enforce the exploitation
of irrelevant/wrong dependencies. In the literature, this
phenomenon is also observed in random-scan Gibbs sam-
pling, as opposed to systematic-scan Gibbs sampling [40].
The random-scan Gibbs sampling is a Markov chain Monte
Carlo method, which considers a random order of variables
when performing sampling by exploiting the conditional
distribution of variables. It has been proved that the order
of the analysis of the variables can affect the effectiveness
and the convergence speed of Gibbs sampling and that a
random-scan can outperform a systematic scan in terms
of convergence speed (number of iterations necessary to
approximate the desired probability distribution) [41]. The
idea of randomly selecting variables has been also exploited
for multi-label classification. Specifically, in [33] the authors
propose the analysis of the set of target variables in different
(random) orders at each iteration.

We expect that a fixed ordering could lead to very good
results when the best ordering is selected, whereas could
lead to a decrease in the accuracy when a wrong ordering
is considered. In other words, we expect some instability
issues in the accuracy results over different datasets. On
the contrary, we expect that the randomization of the target
types that we adopt should lead to more stable results over
different datasets. In order to evaluate the possible influence
of the order of target types on the results obtained by the
proposed method, in the experiments, we will consider both
fixed and random ordering.

4.2 Construction of labeled and unlabeled networks

At each iteration, the algorithm considers the target attribute
of the next type in Lt. According to the selected target
type, it builds two separate networks: the first contains
only labeled nodes, and the second contains only unlabeled
nodes. These networks are built by considering the complete
network and by removing unlabeled and labeled nodes,
respectively. This means that all the nodes of other target
types, as well as nodes of task-relevant types, are included in
both networks. While the network of labeled nodes, for each
target type, changes at different iterations, the network of
unlabeled nodes remains stable and the algorithm classifies
the same nodes several times.

The way nodes are considered as training instances at
each iteration is random. In fact, the algorithm randomly
selects, according to a uniform distribution, a given percent-
age perc of labeled nodes from the labeled network. It is
noteworthy that, at a given iteration, the labeled network
could contain also nodes that were initially unlabeled but
that were classified during a previous iteration. In the case
of ST-MrSBC, the last available predictions will regard the
same target type, whereas in the case of MT-MrSBC, the
last available predictions will regard all the target types
(primary and secondary). This behavior is coherent with
the assumption that predictions performed on other target
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types (primary or secondary) can help in the predictions of
the label of nodes of the current target type.

This implies that, at the next iteration, the algorithm
will be able to take into account some labels predicted at
the previous iterations for the same target type (MT-MrSBC
and ST-MrSBC) and all the labels predicted at the previous
iterations for a different target type (MT-MrSBC only).

This choice is, apparently, in contrast with most of the
works which adopt the self-training framework, where the
idea is often to select the most reliable predictions for the
next iterations. However, 1) this solution does not necessar-
ily lead to better results with respect to a random selection
[42], and 2) we do not use predictions as “hard” constraints,
but in the next iterations we are able to retract decisions that
are not coherent with the new state of the network.

4.3 Estimation of probabilities
At the end of each iteration, it is possible to build a clas-
sification model through Mr-SBC (i.e., its variant) for the
current target type from the network of labeled nodes. For
each unlabeled node, this classification model is exploited to
compute the posterior probability (which takes into account
both network correlation and network autocorrelation) and
its label, according to Equation (1). These labels are then
propagated into the labeled network for the subsequent
iterations, as described in the previous subsection.

The probabilities are saved and exploited at the end of
the entire process. In fact, after the last iteration, the final
classifier combines the probabilities computed during all the
iterations. In particular, for each target type Tt and for each
node v′, the method computes the final probability as the
average of the probabilities computed over the ensemble.
Formally, we extend Equation (1) in the following way:

ψt(v
′) = argmaxc

1

z

z∑
k=1

P (Yc|Rv′k) =

= argmaxc
1

z

z∑
k=1

P (Yc)P (Rv′k|Yc)
P (Rv′k)

, (7)

where z is the number of iterations, i.e., the number of
classifiers in the ensemble, for each target type (the total
number of iterations is z · |Lt|) and Rv′k is the set of rules
identified from the labeled network at the k-th iteration.
Since P (Rv′k) is independent of the class Yc, the final
classification of an unlabeled node is computed as:

ψt(v
′) = argmaxc

1

z

z∑
k=1

P (Yc)P (Rv′k|Yc). (8)

The rationale behind the combination introduced in Equa-
tion (8) (and Equation (7)) is twofold: a) the predictions
obtained at each iteration are based on different training
sets, which may focus on different properties of the concept
to be learned; b) the predictions are made more stable. We
will further discuss both aspects in the following subsection.

4.4 Theoretical motivation
The approach we follow is based on the combination of
two ensemble learning approaches: bagging and boosting.
While bagging produces several training sets by performing

a sampling with replacement in the training set, boost-
ing uses all instances at each repetition but maintains a
weight for each instance in the training set that reflects its
importance [43]. In fact, the principal difference between
bagging and boosting [44], is that the latter trains base
classifiers in sequence, and each base classifier is trained
using a weighted form of the data set in which the weighting
coefficient, associated with each data point, depends on the
performance of the previous classifiers. Once all the classi-
fiers have been trained, their predictions are then combined
through a weighted majority voting scheme.

As observed in [45], boosting is considered stronger
than bagging on noise-free data, whereas bagging is much
more robust than boosting in noisy settings. Moreover,
Breiman [46] showed that bagging can give notable gains
in predictive performance, when applied to unstable learn-
ers (for which small changes in the training set result in
large changes in the predictions2). These two observations,
together with recent results obtained in [47], where the
authors proposed naı̈ve Bayes classifiers in the self-training
framework, motivated our choice of combining bagging and
boosting in the same ensemble learning algorithm.

In fact, our approach is essentially bagging-based, but
it can be considered mixed because we produce several
training sets in sequence as in approaches based on boost-
ing. In this way, in principle, we are able to improve the
performance of new classifiers that may depend on the
predictions of previous classifiers (also on different target
types) and, in addition, make predictions more stable [46].

An additional motivation for the solution we propose
comes from a practical consideration: predictions obtained
at each iteration are based on different training sets. Each
training set may focus on different target attributes or on
different properties of the concept to be learned. Conse-
quently, we are naturally able to deal with the multi-type
classification task, also by boosting predictions of objects of
different types.

5 TIME COMPLEXITY

In order to evaluate the time complexity of the proposed
approach, we first analyze the complexity of Mr-SBC. Let:

• k be the average number of types of objects that
are related to each type of object (i.e., the average
number of foreign key constraints for each table);

• m be the average number of attributes per node;
• n be the average number of nodes of each type (i.e.,

the average number of tuples in each table);
• q be the average number of distinct values of an

attribute;
• maxlen be the user-defined threshold on the length

of classification rules.

In the computation of P (struct), in the worst case (i.e.,
when all the intermediate tables have no attributes and
structural intermediate probabilities have not already been
computed), the time complexity is:

• 0 for the target table;

2. This can also happen in naı̈ve Bayes classifiers when posterior
probabilities for different labels are very similar.
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• O(k× join complexity) for tables at distance 1 from
the target table; ...

• O(kp × join complexity) for tables at distance p.

By exploiting index structures on the attributes of both
primary and foreign keys, a join among p tables is computed
in time O(p · n). Therefore, the time complexity is:

maxlen∑
p=1

O(kp · (p+ 1) · n). (9)

This means that the complexity of computing P (struct) is:

O
(
kmaxlen · (maxlen+ 1) · n

)
= O

(
kmaxlen · n

)
. (10)

The complexity of the computation of
∏
j P (Rj |struct) is:

• O(m · q) for the target table;
• O(m · q · k) for tables at distance 1 from the target

table; ...
• O(m · q · kp) for tables at distance p.

Therefore, the time complexity for
∏
j P (Rj |struct) is:

O(m · q · kmaxlen). (11)

By combining Equations (10) and (11), we have that the
complexity of Mr-SBC is:

O(m · q · kmaxlen · n). (12)

It is noteworthy that k (the average number of tables related
to each table3) is usually very low (0 − 3) and that maxlen
can be reasonably chosen, in order to obtain a good trade-off
between the length of the explored paths and the complexity
of the analysis. Therefore, we can conclude that the time
complexity of Mr-SBC is generally linear with respect to the
number of objects, the number of attributes and the number
of distinct values per attribute.
In our ensemble learning solution, we have:

• z is the number of iterations for each target type;
• |Lt| is the number of target types;
• perc is the percentage of nodes for each sample.

The variant ST-MrSBC performs z iterations on each target
type independently, on a subset of perc · n nodes, leading
to z · |Lt| runs of Mr-SBC. Analogously, MT-MrSBC builds
a classification model for each target type in Lt for each
iteration, leading to the same number of runs of ST-MrSBC
(z · |Lt|). Therefore, according to Equation (12), the time
complexity of both ST-MrSBC and MT-MrSBC is:

O(z · |Lt| ·m · q · kmaxlen · (perc · n)). (13)

Since perc · n � n, and z and |Lt| are constants with
relatively small values, we can conclude that the proposed
algorithm does not affect the time complexity, which is
similar to that of Mr-SBC.

6 EXPERIMENTS

In this section, we first describe the considered datasets
and the experimental setting. Then, we show the obtained
results, discuss them and draw some conclusions.

3. The main difference with respect to the original Mr-SBC is that
here, on average, k includes already visited tables.

6.1 Datasets used in the experiments

MOVIE. This dataset is built from MovieLens100k dataset4

and contains ratings from 1,000 users on 1,700 movies,
which are collected by the movielens recommender system.
We processed the dataset in order to create a network
consisting of 4 node types and 3 edge types. The main
classification task focuses on movies, that is, Tt = {movies},
which are classified into: comedy, thriller, drama and action.
We considered the users as a secondary target, focusing on
their occupation, since this aspect could be strongly related
to their preferences of movies. Therefore, Tst = {users}.
Overall, the network contains 2,051 nodes and 59,532 edges.

NBA. This dataset has been released by the Carnegie
Mellon University5 and contains the statistics of basketball
players of NBA and ABA, collected during the years 2004
and 2005. In particular, it contains statistics from regular
season, playoff and all star games and data related to
players, coaches and drafts. The main classification task
focuses on teams, that is Tt = {teams}, which are classified
into: national and american. We considered the players as a
secondary target, i.e. Tst = {players}, focusing on their role.
The network contains 36,593 nodes and 63,924 edges.

YELP. Yelp is a website where it is possible to find,
review and talk about business activities. The dataset has
been released for academic purposes6 to supply real-world
data for the experimental evaluation of machine learning
methods. The data include: businesses, business character-
istics, users, check-in information, friendship relationships,
tips and reviews. We processed the dataset in order to create
a network consisting of 7 node types and 8 edge types.
In this dataset, we considered two primary targets, i.e.,
Tt = {business, users}, since we have the ground truth
for both of them. The businesses are classified into four
categories: Restaurants, Beauty & Spas, Health & Medical and
Shopping, whereas the users are classified into: low and high,
representing the average rating they gave to the businesses.
The network contains 1,387,596 nodes and 1,371,060 edges.

IMDB. This dataset7 is an extension of the Movie-
Lens10M dataset, published by the GroupLens research
group. In particular, it integrates data from the Movielens
dataset with data about the pages from Internet Movie
Database (IMDb) and reviews from Rotten Tomatoes. We
kept only the users with both rating and tagging informa-
tion. Moreover, we processed the dataset in order to create a
network consisting of 13 node types and 16 edge types. The
classification task focuses on movies, i.e., Tt = {movies},
which are classified into: comedy, thriller, drama and action,
while, as in the dataset MOVIE, we consider the users as a
secondary target, i.e. Tst = {users}. The network contains
212,039 nodes and 342,161 edges.

STACK. This dataset8 is an anonymized dump of user-
contributed content on the Stack Exchange network. We se-
lected data coming from the Stack Overflow web-site which
include posts, users, votes, comments, history and links. In
this dataset, the main classification task focuses on posts,

4. http://grouplens.org/datasets/movielens/
5. http://www.cs.cmu.edu/ awm/10701/project/data.html
6. http://www.yelp.com/dataset challenge
7. http://grouplens.org/datasets/hetrec-2011/
8. https://archive.org/details/stackexchange
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i.e., Tt = {posts}, which are classified into five categories: 1
(Questions), 2 (Answers), 3 (Wiki), 4 (TagWikiExcerpt) and
5 (TagWiki). Since the users’ reputation can be considered
strongly related to the type of posts they make (e.g., an
expert usually posts answers rather than questions), we con-
sidered the users as a secondary target, i.e., Tst = {users},
focusing on their reputation. The network contains 92,800
nodes and 114,385 edges.

6.2 Experimental setting

The experimental questions we want to answer are:

1) What is the contribution of the different variants of
the ensemble learning solution we propose?

2) Is the variant MT-MrSBC able to capture possible
(network) correlation of labels of different types?

3) How does the proposed method compare with com-
petitor solutions?

4) Is the ensemble learning solution able to produce
more stable predictions?

As concerns the evaluation of the different variants of the
ensemble learning solutions we propose, we compared them
with the original version of Mr-SBC. This allows us to eval-
uate the contribution of each aspect we take into account in
our method, i.e., the iterative nature of the ensemble-based
self-training approach (introduced in ST-MrSBC) and the
classification of objects of multiple types, both primary and
secondary targets (implemented in MT-MrSBC). Moreover,
we evaluate the performance of MT-MrSBC by considering
both the strategies for ordering the target types introduced
in Section 4. We call these two variants LexicographicMT-
MrSBC and RandomMT-MrSBC, respectively.

As for the second question, we considered all the known
links between objects belonging to target types as a new
ground truth and computed the accuracy of the pair-wise
prediction of labels. We considered only the first iteration
of the framework, in order to exclude the possible influence
of the ensemble approach. This allows us to further assess
the possible contribution of the multi-type approach and to
evaluate whether it really captures, if any, network correla-
tion of labels of different types.

In order to perform a comparison with other systems,
we also ran the experiments with four competitor methods.
In particular, we considered i) the relational version of the
nearest neighbour algorithm (RelIBK), ii) the SVM-based
algorithm SMO (RelSMO), iii) the algorithm GNetMine [4],
which is natively able to work on heterogeneous networks,
and iv) the algorithm HENPC [21], recently proposed to
solve the multi-type classification task in heterogeneous
networks. However, RelIBK, RelSMO and HENPC were not
able to finish within 3 days of execution, while GNetMine
was not able to compute the results for Yelp dataset, since
the system went out of memory (on a server with 32GB of
RAM). In these cases, we ran the experiments on a reduced
set of nodes (about 1, 000 nodes for each target type) for the
datasets IMDB, STACK and YELP, by adopting a stratified
random sampling. It is noteworthy that, for the dataset
YELP (which has two primary target types), ST-MrSBC,
RelIBK, RelSMO and GNetMine were run twice in order
to learn two different classification models.

Finally, we evaluated the stability of the models in
terms of standard deviation of the accuracy, by varying
the number of iterations. This comparison was performed
among LexicographicMT-MrSBC, RandomMT-MrSBC, ST-
MrSBC and Mr-SBC.

The evaluation was performed in terms of average and
standard deviation of the accuracy over the results obtained
by adopting the 10-fold cross validation strategy. Accuracies
were measured on the primary target types. Finally, we
performed a Friedman test with the Nemenyi post-hoc tests
at p-value = 0.05, to evaluate the significance of the results
from a statistical viewpoint. As regards the parameter set-
ting of ST-MrSBC and MT-MrSBC, we considered a random
sampling of 20% of nodes for each classifier in the ensemble
and the number of iterations for each target type z ranging
from 1 to 50. maxlen is set to 999 in order to capture all
possible interactions of any length in the network.

6.3 Results

The results obtained by Mr-SBC and the two variants ST-
MrSBC and MT-MrSBC (with both the ordering strategies)
are shown in Figure 3. They show how the accuracy varies
with respect to the number of iterations. As can be ob-
served, the proposed method (in all its variants) is always
able to obtain better performance than Mr-SBC. The only
exception is the target type business of the dataset Yelp,
where LexicographicMT-MrSBC obtains the worst result
among all the considered approaches. This is probably due
to the fact that this approach forced the system to capture
a dependency business → users which is probably weak,
and did not allow the system to exploit a possible depen-
dency users → business. This observation is confirmed
by the result obtained by RandomMT-MrSBC (actually
the best for this dataset), which randomly selected either
the dependency business → users or the dependency
users→ business at each iteration. Another relevant obser-
vation is that the improvement increases with the number of
iterations, and that the optimal result is reached after only
5 iterations. This means that the proposed method rapidly
converges to the best results in few iterations.

By comparing the two proposed variants (ST-MrSBC and
MT-MrSBC), we can observe that, on most of the datasets,
MT-MrSBC is generally able to obtain better results. This
confirms our initial intuition about the exploitation of the
predictions performed on related instances of different
types. The only cases in which ST-MrSBC outperforms MT-
MrSBC are on the datasets MOVIE and STACK. This is
probably due to a weak relationship/dependency between
the considered primary and secondary target types, whose
(possibly wrong) exploitation affected the results. However,
the difference in terms of accuracy appears very low. On the
contrary, both LexicographicMr-SBC and RandomMr-SBC
lead to a significant improvement with respect to ST-MrSBC
on the target type user of the dataset Yelp and on the dataset
NBA (where the advantage is more evident).

All these considerations are confirmed by the charts
showing the result of the Nemenyi post-hoc tests performed
on single datasets, which are depicted in Figure 5. In par-
ticular, we can observe that for the datasets NBA and for
the target type users of the dataset Yelp, the improvement

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2018.2822307

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

Fig. 3. Results in terms of accuracy averaged over the folds of the 10-fold cross validation varying the number of iterations per target attribute.

provided by LexicographicMT-MrSBC and RandomMT-
MrSBC over the competitors is statistically significant at
p-value= 0.05. Focusing on LexicographicMT-MrSBC, we
observe two specular and interesting cases: for the dataset
IMDB it provides the best result, while for the target type
Business of the dataset Yelp (as already described) it appears
to be the worst approach. This instability is again caused
by the static ordering on the target types. Indeed, in the
first case, the exploitation of the dependency movies →
users (which is surely strong, if we observe the result)
led LexicographicMT-MrSBC to obtain a better result with
respect to RandomMT-MrSBC, which alternatively (and ran-
domly) exploited the dependencies movies → users and
users → movies (which appears weak). On the contrary,
in the second case, the static (unlucky) choice of the depen-
dency to be exploited brought LexicographicMT-MrSBC to
the bottom of the ranking.

In order to show an overview of the performance of the
considered approaches, we also performed a statistical test
which evaluates globally the performance of the algorithms
over all the datasets. The results are summarized in the
last chart of Figure 5, which shows that all the proposed
approaches provide a statistically significant advantage over
the standard Mr-SBC approach. Moreover, the high instabil-
ity of LexicographicMT-MrSBC makes it statistically equiv-
alent to ST-MrSBC, whereas RandomMT-MrSBC is (overall)
significantly better than all the other approaches.

Fig. 4. Average accuracy in the pair-wise prediction of labels of directly
linked objects of different types. The results reported are obtained at
the first iteration for each target (to exclude the possible influence of the
ensemble approach).

In order to further assess the contribution of the multi-
type approach (experimental question 2), we computed the
accuracy of the pair-wise prediction of labels of connected
objects of different types. In other words, we evaluated how
well the method is able to predict a pair of labels for a pair
of linked objects. The average accuracy among all the con-
sidered datasets is reported in Figure 4. We can observe that
the results of ST-MrSBC are worse than those obtained by
Mr-SBC. This is clearly due to the fact that they adopt almost
the same approach (since we focus only on the first iteration
for each target) and ST-MrSBC only considers a sample
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YELP BUSINESS YELP USERS

ALL DATASETS

Fig. 5. Results of the Nemenyi post-hoc test on the average accuracy. Better algorithms are positioned on the right-hand side, and those that do
not significantly differ in performance (at p-value = 0.05) are connected with a line.

of the training data. On the contrary, both the multi-type
approaches (especially RandomMT-MrSBC) show a clear
improvement over the single-type approaches (MrSBC and
ST-MrSBC), which confirms that, if any, the method is able to
actually capture label dependencies between multiple types
of objects. We note that this behavior is not motivated by
the contribution of the ensemble learning approach (which
is excluded at the first iteration per target).

Next, we also compared the results obtained by the
proposed approach with those of four competitors that can
be used for the network classification task (experimental
question 3): RelIBK, RelSMO, GNetMine and HENPC. The
result of the statistical test, reported in Figure 6, shows
that the improvement provided by the proposed method
is able to give Mr-SBC the advantage of outperforming the
competitors9. Indeed, the original version of Mr-SBC is not
able to outperform the considered competitors, while the
ensemble learning (ST-MrSBC) leads to outperform all the
competitors (although not statistically w.r.t. HENPC and

9. We are aware that the significance of this test is negatively affected
by the execution of the competitors on smaller datasets (obtained with a
stratified random sampling) but, as stated before, this was the only way
we had to deal with the high complexity of these algorithms. Moreover,
we have also to consider that our method is based on sampling.

Fig. 6. Results of the Nemenyi Post-Hoc tests for the average accu-
racy over all the considered datasets. The accuracy values of RelIBK,
RelSMO, GNetMine and HENPC, when necessary, are obtained from
reduced-size datasets after a stratified random sampling.

RelIBk). The clear advantage comes from the fruitful com-
bination of capturing label dependencies between multiple
types of objects and of the ensemble learning approach (MT-
MrSBC), which significantly improves the accuracy.

Finally, we evaluate the stability of the models (experi-
mental question 4). As can be seen in Figure 7, by increasing
the number of iterations, the models become more “stable”
(i.e. the standard deviation of their accuracy is smaller).
While the differences are not statistically significant in the
Friedman test (p-value =0.05), the ranking becomes clear
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Fig. 7. Results of the Nemenyi Post-Hoc tests for the standard deviation
at the 10-th, 30-th and 50-th iterations for each target of the ensemble
algorithm, respectively. Better algorithms (i.e. with smaller standard
deviation) are positioned on the right-hand side.

after 30 iterations per target attribute: the most unstable
predictor is LexicographicMT-MrSBC (ranked, on average,
in position 3.3 out of 4). As expected, the best is RandomMT-
MrSBC (ranked, on average, in position 1.8 out of 4). This
empirically proves that the combination of capturing label
dependencies between multiple types of objects and of the
ensemble learning approach leads to smooth and stable pre-
dictions. The difference between RandomMT-MrSBC and
ST-MrSBC (ranked, on average, in position 2.4 out of 4) is
only due to the effect of the multi-type learning task.

Overall, we can conclude that the application of the
proposed method, which is able to capture both correla-
tion and autocorrelation phenomena, as well as to predict
missing values, by exploiting the same classification method
adopted for primary targets, can lead to better, more stable
predictions when applied to real-world data organized in
heterogeneous networks.

6.4 Availability
The proposed method, all the datasets used in the experi-
ments and complete experimental results are publicly avail-
able at https://doi.org/10.6084/m9.figshare.4334048.v7

7 CONCLUSIONS

In this paper, we proposed an extension of the system Mr-
SBC which works on heterogeneous networks and that is
able to capture both correlation and autocorrelation phe-
nomena. The presence of these phenomena is fruitfully
exploited to improve the accuracy of the classification of
nodes of some types, also by exploiting the classification of
nodes of other types in the network. Experiments performed
on real-world datasets show that both the proposed variants

are able to significantly outperform the standard implemen-
tation of Mr-SBC, especially when a random ordering of the
target types for each iteration is adopted. Moreover, they
provide Mr-SBC with the right advantage to outperform
four other well-known algorithms for the classification of
data organized in a heterogeneous network.

As future work, we plan to perform a close analysis
of the performance of the proposed method by consider-
ing different aspects that could (positively or negatively)
affect its performance, such as the size of the sampling,
the possibility to select only a subset of labeled nodes to
propagate to the next iteration, or the adoption of a smarter
combination strategy for the ensemble of predictions. More-
over, we plan to investigate the possibility of applying the
proposed method in some specific domains, such as in
bioinformatics, in order to evaluate its possible exploitation
for the analysis of complex biological networks consisting
of several connected entities. This would also give us the
possibility to perform an analysis of the results from a
qualitative viewpoint, with the support of biologists.
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