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Abstract Gene network reconstruction is a bioinformatics task that aims at mod-
elling the complex regulatory activities that may occur among genes. This task is
typically solved by means of link prediction methods that analyze gene expression
data. However, the reconstructed networks often suffer from a high amount of false
positive edges, which are actually the result of indirect regulation activities due to
the presence of common cause and common effect phenomena or, in other terms,
due to the fact that the adopted inductive methods do not take into account pos-
sible causality phenomena. This issue is even more exasperated by the inherent
presence of a high amount of noise in gene expression data.

Existing methods for the identification of a transitive reduction of a network
or for the removal of (possibly) redundant edges suffer from limitations in the
structure of the network or in the nature/length of the indirect regulation, and
often require additional pre-processing steps to handle specific peculiarities of the
networks (e.g., cycles). Moreover, they are not able to consider possible commu-
nity structures and possible similar roles of the genes in the network (e.g. hub
nodes), which may change the tendency of nodes to be highly connected (and with
which nodes) in the network. In this paper, we propose the method INLOCANDA,
which learns an inductive predictive model for gene network reconstruction and
overcomes all the mentioned limitations. In particular, INLOCANDA is able to i)
identify and exploit indirect relationships of arbitrary length to remove edges due
to common cause and common effect phenomena; ii) take into account possible
community structures and possible similar roles by means of graph embedding.
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Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

E-mail: gianvito.pio@uniba.it, michelangelo.ceci@uniba.it, f.prisciandaro1@studenti.uniba.it,
donato.malerba@uniba.it



2 Gianvito Pio et al.

Experiments performed along multiple dimensions of analysis on benchmark, real
networks of two organisms (E. coli and S. cerevisiae) show a higher accuracy with
respect to the competitors, as well as a higher robustness to the presence of noise
in the data, also when a huge amount of (possibly false positive) interactions is
removed. Availability: http://www.di.uniba.it/˜gianvitopio/systems/inlocanda/
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1 Introduction

Recent studies in biology have been significantly supported by high throughput
technologies and computational methods, which have led to an improved under-
standing of the working mechanisms in several organisms. Such mechanisms can
be usually modeled through biological networks, which are able to easily describe
the considered biological entities, as well as their relationships and interactions.
On the basis of the phenomenon under study, different types of biological networks
can be considered. The most prominent example is that of networks modeling the
control of transcription into messenger RNAs or proteins [3,38]. In these networks,
called Gene-Regulatory Networks (GRNs), nodes represent molecular entities, such
as transcription factors, proteins and metabolites, whereas edges represent inter-
actions (i.e., the up/down regulation of gene expression levels), such as protein-
protein and protein-DNA interactions.

The direct observation of the real structure of interaction networks requires
expensive in-lab experiments, usually performed through the so-called epistasis
analysis. Although in the literature we can find some computational approaches
which support such an analysis [50], gene expression data are much easier to obtain,
therefore most of the computational approaches proposed in the literature have
focused on predicting the existence of interactions from gene expression data,
mainly on the basis of link prediction methods. These approaches analyze the
expression level of the genes under different conditions (e.g., in the presence of
specific diseases or after a treatment with a specific drug) or, alternatively, under
a single condition in different time instants. The expression levels observed for each
gene are represented as a feature vector. A gene-gene matrix which defines a score
of the interaction for each pair of genes is then built by pair-wisely computing
a similarity, correlation or information-theory-based measure between the vectors
associated to genes [21]. Finally, the existence of edges is inferred by imposing a
threshold on the obtained score (see Figure 1). The direction of the interactions
can be inferred only if the considered measure is asymmetric.

However, except for those based on clustering [41], these methods generally
assume independence among the interactions, i.e., they focus on each pair of genes
separately, disregarding possible dependencies or indirect influences among them.
This assumption leads to predict the false positive interactions, which are usually
due to some causality phenomena: i) common regulator genes (also referred to as
common cause in the literature [27]) or ii) commonly regulated genes (also referred
to as common effect in the literature [27]). In the first case (see Figure 2(a)), the
feature vector associated to a gene C, which exhibits a regulatory activity on two
genes A and B, will presumably result in a similarity between A and B. In fact,
even if there is no direct interaction between the genes A and B, since they are
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Fig. 1 Network reconstruction from expression data. On the left, a matrix of M genes, each
associated to a vector containing the expression level measured under N different conditions.
In the middle, the gene-gene matrix obtained by pair-wisely computing a similarity/correlation
measure between the vectors. On the right, the reconstructed network obtained by imposing
a threshold on the values of the gene-gene matrix.
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Fig. 2 Issues in the network reconstruction due to common cause (a) or common effect (b)
phenomena. The direction of the interactions does not appear in the reconstructed networks
if we consider the case of a symmetric similarity/correlation measure.

both similar to C, their feature vectors will also appear similar, therefore an edge
between them could possibly be detected. Analogously, in the second case (see
Figure 2(b)), a gene C, which is regulated by two genes A and B, will presumably
result in a similarity between A and B. Such issues are even more evident when
data are affected by noise, since possible measurement errors lead to significantly
increasing the number of false positives, due to (noisy) common causes or common
effects, compromising the overall quality of the reconstruction.

The identification and removal of false positive interactions would be highly
beneficial for domain experts who can concentrate further analyses and resources
only on relevant interactions, disregarding those that are due to noise [47] and
those due to possible hidden common causes and hidden common effects [29].
The general approach to solve these issues is based on post-processing the gene-
gene matrix. The methods that operate in such a way are usually called scoring
schemes [21], where the idea is to improve the quality of the reconstructed network
by analyzing large sets of genes simultaneously, in order to catch more global
interaction activities and possibly reduce false positives, due to the presence of
common cause and common effect phenomena.

One of the most popular scoring schemes is ARACNE [32], which evaluates
all the possible connected gene triplets and removes the weakest edge. ARACNE
is limited to undirected networks and is not able to analyze indirect interactions
which involve more than three genes. However, although the idea of removing the
weakest edge (i.e., the edge with the lowest score) is very simple, the intuition of
considering the score as an indication of the reliability of the interaction is reason-
able and has been exploited by other works in the literature (e.g., [8]). In order to
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Fig. 3 An example of a network where it is possible to observe two node communities and a
similar role (hub) performed by the nodes A and B.

overcome this limitation, in [42] we presented the method LOCANDA which, start-
ing from a (possibly noisy) network reconstructed by any supervised/unsupervised
reconstruction method, is able to remove false positive interactions on the basis of
direct and indirect interactions of arbitrary length (i.e., involving, in a path of the
regulatory network, an arbitrary number of genes). LOCANDA has its roots in
methods for graph analysis and, in particular, in works for transitive reduction [2,
23] but, contrary to existing methods, it does not require additional pre-processing
steps to handle specific peculiarities of the network, such as weights on the edges,
direction of edges and, especially, cycles.

However, although LOCANDA is able to identify common cause and common
effect phenomena (see Figure 2) involving an arbitrary number of genes, it has
the important limitation that it does not consider the structural role of the nodes
in the network. One prominent example where the structural role of the node is
important is that of hub nodes, i.e., nodes influencing a large number of other
nodes. Indeed, in the biological domain, hubs have shown to play an essential role
in gene regulation and biological processes. The importance of hub nodes is clear
when we consider transcription factors (TFs), i.e., proteins that bind to specific
DNA sequences, since, in humans, approximately 10% of genes in the genome
code for around 2600 TFs [4]. The result is that human TFs account for most of
the regulation activities in the human genome, especially during the development
stage [49]. Moreover, in the tumor genesis, hub nodes show a determinant role in
the genetic networks of tumors [28,44]. This aspect has been recognized in several
recent methods for the reconstruction of gene networks, which exploit informa-
tion about hub genes, either explicitly provided as background knowledge [49], or
identified by the method itself [11] as we do in the present paper. Despite these
considerations, LOCANDA does not catch connectivity patterns generally observ-
able in networks, such as node communities and common structural roles [18]. On
the contrary, the analysis of indirect interactions should take into account possi-
ble node communities and common structural roles: if two nodes share the same
community or have the same role in the network (e.g., they are both hub nodes),
they should be treated in a similar way when solving the network reconstruction
task (see Figure 3).

Another limitation of LOCANDA is that it is not able to learn an inductive
predictive model, i.e., it is not able to predict whether an unseen edge exists or
not. In other words, it cannot make predictions involving unseen nodes or edges,
but can only remove (possibly) false positive edges from a given network.
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In this paper, we propose INLOCANDA (INductive LOngest-path CAusal Net-
work Discovery Algorithm), which extends LOCANDA towards a more general
approach for the reconstruction of Gene Regulatory Networks and aims at solving
the limitations of LOCANDA. In particular, the methodological differences and
extensions of INLOCANDA with respect to LOCANDA are:

– LOCANDA is only able to catch causality phenomena to remove possible false
positive edges, thus it cannot predict the existence of unseen edges in the net-
work; INLOCANDA reduces the network through the same approach followed
by LOCANDA, but also exploits the reduced network to build an inductive pre-
dictive model able to decide whether an interaction between two genes exists
or not, even if it has not been seen during the learning phase.

– INLOCANDA learns and exploits a feature representation from the reduced
network that embeds the information on nodes and edges (through graph em-
bedding), catching possible community structures and possible similar roles
performed by nodes. This is particularly important in the case of Gene Reg-
ulatory Networks, where the role of hub nodes has been recognized in the
literature [11,49].

Besides these methodological differences, this paper extends and revises the paper
[42] as follows:

– we report a deeper analysis of related work, focusing on methods for the re-
duction of edges in networks, on approaches for the reconstruction of gene
regulatory networks as well as on methods for graph embedding;

– we theoretically show the important property of reachability equivalence of the
reduced network extracted by INLOCANDA;

– we conduct an analysis of the time complexity of INLOCANDA;
– we perform a broader set of experiments, including both synthetic and real

datasets, aiming to evaluate the effectiveness of the proposed approach com-
pared to state-of-the-art methods. Experiments have been conducted along
different dimensions of analysis: the strategy adopted to learn the feature rep-
resentation, the approach adopted to remove possible false positive edges and
the supervised learner that builds the final predictive model.

The rest of the paper is organized as follows. In Section 2, we briefly discuss
existing related work. In Section 3, we introduce our method for learning a model
for the reconstruction of gene regulatory networks, providing details about the
approach adopted for catching causality phenomena, as well as for the construction
of the network embedding. In Section 4, we discuss the time complexity of our
method, while in Section 5 we describe the experimental evaluation and comment
on the obtained results. Finally, in Section 6, we draw some conclusions and outline
possible future works.

2 Related Work

Our work finds its roots in different research lines, i.e., i) approaches for the re-
construction of Gene Regulatory Networks, ii) general-purpose methods for graph
reduction that analyze and exploit causal phenomena, iii) approaches for causal
analysis specifically tailored for biological networks, and iv) methods for learning
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a compact feature representation (embedding) of nodes and edges. Therefore, in
the following subsections, we briefly review previous work related to these areas.

2.1 Gene Network Reconstruction

In the literature, several experimental approaches based on in vitro experiments
have been proposed for the identification of the structure of gene regulatory net-
works [6,10,36]. However, these techniques are often technically and financially
demanding [38]. Therefore, most of the recent developments have focused on com-
putational approaches for inferring the structure of gene regulatory networks from
expression data, i.e., measurements of the response of the genes under different
perturbation or stress conditions. In [15,20,26,33], it is possible to evaluate most
of the data-driven approaches to infer the network structure. They are based on
different principles, including relevance networks, clustering, probabilistic mod-
els, differential equations, Markov chains, Bayesian networks and random walk
processes (see [30] for additional details).

A broad evaluation and comparison of existing computational methods for
gene network reconstruction has been performed in the context of the DREAM
(Dialogue for Reverse Engineering Assessments and Methods) series of challenges.
In [31], the authors evaluated all the methods proposed in the fifth edition of
the challenge and empirically proved that the combination of all the methods, by
averaging ranks of predictions (“Wisdom of crowds”), leads to a more accurate
reconstruction. Another solution for combining the output of several methods has
been proposed in [19], where predictions of each method are ranked according
to their scores and finally combined by taking the k-th highest rank among all
the considered methods, where k is an input parameter. Following this stream, in
[12], the authors proposed the system GENERE, which exploits a machine learning
solution to combine methods outcomes. In particular, it builds a (possibly stronger)
predictive model by taking as input features the scores returned by several “base”
algorithms for gene network reconstruction, resorting to a meta-learning solution
[48]. The authors solved several specific issues raised by the task at hand, through
a multi-view learning solution able to work in presence of only positive examples.

However, these methods need a pre-defined threshold in the final stage of the
reconstruction (see Figure 1) to decide whether the edge should be predicted or
not. Moreover, they cannot take into account the presence of possible common
cause and common effect phenomena, as introduced in Section 1.

2.2 Analysis of causality for graph reduction

In the literature we can find several approaches which catch and exploit causality
phenomena. Here we concentrate on the problem of graph (transitive) reduction by
taking causality into account. A general framework for the identification of causal
edges between variables is described in [37], which consists in i) the identification
of correlations between variables, which suggest possible (undirected) edges; ii)
the analysis of partial correlations, which can be exploited to remove indirect
relationships; iii) the exploitation of some assumptions on the network structure
(e.g., acyclicity), which can suggest the direction of edges. It is noteworthy that
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such assumptions can be violated in specific domains (e.g., biology), leading to an
inaccurate reconstruction.

An example of the application of such a framework can be found in algorithms
for learning the structure of Bayesian networks [27], which identify causalities
between variables by analyzing the d-separation among them, which is based on
common cause and common effect phenomena (see Section 1).

Other approaches exploit the concept of causality to identify a transitive re-
duction of a graph [2,23]. These methods analyze a graph and produce a reduced
version containing a subset of edges, which guarantees the conveyance of the same
information of the original graph, in terms of reachability. This means that, anal-
ogously to the method proposed in this paper, these approaches aim at removing
edges that can be considered the result of an indirect relationship. For example,
the method proposed in [2] finds a transitive reduction G′ of the initial graph G,
where G′ has a directed path from any vertex u to any vertex v if and only if G
has a directed path from vertex u to vertex v and there is no graph with such a
property having fewer edges than G′. In other words, the obtained graph G′ is
the smallest graph (in terms of edges) such that given any pair of nodes 〈u, v〉,
if v is (respectively, is not) reachable from u in the initial graph G, then v is
(respectively, is not) reachable in the reduced graph G′. Although it is based on
the same principles of INLOCANDA, this approach requires the identification of
an equivalent acyclic graph before performing the analysis and is limited to un-
weighted graphs. Therefore, it cannot exploit information on the reliability (score)
commonly associated to each edge in biological networks. Moreover, this approach
aims at achieving the minimality of the resulting graph, which is not a desirable
property in the case of gene regulatory networks. Indeed, it is very likely that a
redundant graph (in terms of reachability) may naturally represent a gene regula-
tory network, since a group of genes may regulate each other. We will exploit this
concept in Section 3.1, where we will propose a constraint to decide whether to
remove an edge or not.

Analogously, in [23] the authors propose the identification of a Minimal Equiv-
alent Graph (MEG), whose definition is the same as the transitive reduction pro-
posed in [2]. The method consists of several steps: i) the identification of strongly
connected components; ii) the removal of cycles from each component; iii) the
identification of the minimal equivalent graph for each component and iv) the
reintroduction of the edges removed in step i). Even if it is more sophisticated,
this approach suffers from the same limitations described for [2].

2.3 Analysis of causality in biological networks

Focusing on biological networks, in the literature several approaches have been
proposed to consider specific issues raised by such an application domain, by ex-
ploiting specific causality phenomena. In particular, causality can be exploited to
infer the directionality of the interactions from the time series of gene expression
data [21]. In this case, the regulator gene (the cause), by definition, should act
before the regulated gene (the effect). Therefore, a common strategy consists in
computing the similarity between two genes u and v, by performing a progressive
shifting forward in time of the time-series associated to the first gene u. If the
similarity increases, then it is possible to conclude that u acts before v, therefore,
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u regulates v. More sophisticated approaches exploit Granger causality [25] or hid-
den (i.e., unobserved, latent) common causes and common effects [29]. All these
methods, however, are applicable only in the analysis of time-series data, while
they cannot be applied when each gene is associated with a vector representing its
expression values in different (steady) conditions. In [32], the authors propose the
(previously mentioned) method ARACNE, which exploits causality phenomena
to identify and remove indirect relationships. ARACNE acts as a post-processing
phase of the network reconstruction, aiming at removing interactions considered
to be an indirect effect of other interactions. This is performed by assuming that,
given a triplet of connected genes, the weakest interaction (i.e., that with the lowest
score) is a false positive edge due to common cause or common effect phenomena.
As already stated, although it is based on principles similar to those exploited by
our method, this approach is limited to indirect interactions involving only three
genes, thus it cannot identify indirect interactions of arbitrary length.

In a more recent work [8], the authors propose a method for the identification
of the transitive reduction of biological networks. This method is able to analyze
both unweighted networks and possibly cyclic weighted networks. In the latter
case, however, following the approach adopted in [40], pre-processing of the net-
work is required in order to make it acyclic. In detail, the method i) identifies
and shrinks the strongly connected components into single nodes, ii) applies the
reduction on the resulting acyclic graph, and iii) re-expands the components. It
is noteworthy that this procedure assumes that the genes within each component
are fully connected and do not perform any reduction within each component,
since the results would strongly depend on the order of the analysis. Moreover,
this procedure assumes that the graph resulting from step i) is acyclic, i.e., there
is no cycle among the components.

2.4 Network embedding

In the literature a lot of effort has been made in the design of methods to construct
relevant node features from the network structure. Several approaches generate
node features on the basis of feature extraction techniques, that usually exploit
network properties and a few manually defined features [16,22]. On the contrary,
in [18], the authors consider the feature extraction task to be a representation
learning problem that does not require any hand-engineered feature.

Unsupervised methods usually analyze the spectral properties of different ma-
trix representations of networks. According to this perspective, these methods are
equivalent to matrix dimensionality reduction techniques. Some examples are [5,
43,46], that, however, suffer from both computational and effectiveness viewpoints.
The computational inefficiency is mainly due to the fact that they are generally
based on eigendecomposition of a data matrix. On the other hand, the quality
of the result is affected by the fact that they do not take into account multiple
observable patterns in the network, that is, they are not able to simultaneously
consider community structures and common roles of nodes [18].

Some recent works exploit approaches initially proposed for natural language
processing. In particular, inspired by the Skip-gram model [34], these approaches
represent a network as a document and a possible sequence of nodes as a sequence
of words. The aim is to obtain a new representation for words/nodes where features
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are numeric, such that the new feature space is able to preserve the similarity of
the meanings of words appearing in similar contexts, or, in the case of networks,
the similarity of roles of nodes showing a similar structure of their neighborhood.
In the specific case of networks, the identification of the neighborhood of each
node is guided by a search strategy (mainly based on the classical Breadth-First
and Depth-First search strategies, or on a combination thereof) and by some ap-
proaches aiming at reducing the complexity of the task, such as an upper threshold
on the number of neighbours to consider.

Inspired by the work proposed in [18], we adopt a strategy that is not affected
by the specific search strategy (as happens in [39,45]), which is also able to catch
community structures and common roles performed by nodes in the network. More-
over, we provide a representation for “directed” edges. This is different from what
is done in [18], where the main goal is to learn a representation for nodes, while the
representation for edges is obtained by combining pairs of vectors (associated with
pairs of nodes) through symmetric binary operators. The main drawback is that
it is not possible to provide a representation that takes into account the direction
of the edge, which is fundamental in our case.

3 The method INLOCANDA

In this section, we describe in detail the INLOCANDA method. We remember
that it takes as input a (possibly noisy) Gene Regulatory Network, which has been
reconstructed by any supervised/unsupervised method from gene expression data.
The network consists of nodes and directed edges, where the nodes represent genes
and directed edges correspond to regulatory activities (i.e., up/down regulation of
gene expression levels). Most of the existing reconstruction methods also provide
a weight for each edge, i.e., a score which represents the degree of certainty or
the confidence provided by the reconstruction method about the corresponding
inferred interaction. We consider the most general case in which the reconstruction
method provides a weight in [0, 1] for each edge between any pair of nodes. More
formally, let:

– V be the set of genes, i.e., the nodes in the reconstructed network.
– E ⊆ V × V × R be the set of interactions in the reconstructed network, i.e.,

the weighted edges in the form 〈source node, destination node, edge weight〉
(henceforth, for every edge 〈u, v, w〉 ∈ E involving the nodes u and v we denote
its weight w as w(u, v));

– g: E → {true, false} be an ideal function which returns true if e ∈ E is a
known existing interaction in the gene regulatory network, false otherwise.

The task to be solved can then be formalized as:
Input: the reconstructed network G = 〈V,E〉
Solution: find an inductive predictive model, in the form of a prediction function
f : V × V → {true, false}, which approximates the ideal function g.
INLOCANDA consists of three stages, which are shown in Figure 4:

1. the reduction of the original (possibly noisy) reconstructed network, i.e., the
removal of possible false positive edges, by catching common cause and common
effect phenomena in the network;
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Fig. 4 General workflow of the method INLOCANDA.

2. the learning of a feature representation from the reduced network, able to rep-
resent the information on single nodes and pairs of nodes (edges), by catching
possible community structures and possible similar roles performed by nodes;

3. the learning of an inductive predictive model from edges represented through
the identified feature representation, able to predict whether a (possibly un-
seen) edge between two (possibly previously unseen) nodes exists or not.

Stage 3) can be solved by any learning algorithm able to build a classification
model. To solve the specific task of Gene Network Reconstruction we adopt the
predictive clustering tree (PCT) framework. The PCT framework views a decision
tree as a hierarchy of clusters, where the top-node corresponds to one cluster con-
taining all the data. This cluster is recursively partitioned into smaller clusters,
while moving down the tree. The PCT framework is implemented in CLUS [7],
available at sourceforge.net/projects/clus. The motivations behind the adop-
tion of the PCT framework are the following: i) the clusters constructed by CLUS
are able to group together pairs of nodes, where the first node and the second
node of each pair are considered independent, thus considering the direction of
the edge; ii) PCT induction, as in classical induction of decision trees, performs
some form of embedded feature selection (i.e. the most important features are se-
lected in the tests at the highest levels of the tree). This is important in our case,
since features extracted at stage 2) can be highly redundant; iii) it is effective
in handling highly imbalanced datasets, as it is our case (the amount of positive
examples is much lower with respect to the amount of negative examples); iv)
PCT induction is very efficient. This aspect will be clarified in Section 4, where we
discuss the time complexity of INLOCANDA. Obviously, many other classification
systems exhibit the same characteristics and can be used. At this respect, in our
experimental evaluation and in the Appendixes, we also show the results obtained
with three other classifiers, in order to prove the effectiveness of the approach we
adopt to reduce the false positive edges, when different classifiers, possibly based
on different underlying models, are adopted.

In the following subsections, we describe the first two stages in details.
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3.1 Exploiting causality to reduce the reconstructed network

In this section, we describe the approach adopted by INLOCANDA for the iden-
tification and removal of false positive edges from a (noisy) reconstructed gene
network. As already introduced in Section 1, our approach is based on the con-
cepts of common cause and common effect. We remember that INLOCANDA is
not limited to the simple cases depicted in Figure 2, and shows the following dis-
tinguishing characteristics: i) unlike classical methods for the identification of a
transitive reduction of networks [2,23], it is able to work on weighted networks,
which is relevant when dealing with reconstructed biological networks, where edges
are associated to a score/reliability; ii) unlike [32], it is able to work on directed
networks, which (if available) becomes important in order to correctly consider
causality phenomena; iii) similar to [8] and unlike [32], it is able to catch indi-
rect interactions of arbitrary length, by comparing the reliability of direct edges
to that of identified indirect relationships; iv) contrary to [2], [8] and [23] it is
able to directly work on possibly cyclic networks, by guaranteeing the same result
independently of the order of analysis.

We catch indirect interactions among genes by identifying and analyzing pos-
sible paths connecting them in the network. Indeed, one path in a Gene Regula-
tory Network can represent a sequence of regulatory activities that can let recon-
struction methods identify also nonexistent (i.e., false positive) direct interactions
among the genes involved in the path. Therefore, we compare the reliability ob-
served on the paths with that observed on direct edges, in order to decide whether
to remove direct edges. Since our method is based on the concepts of “path”,
“reachability”, “reliability”, we formally define them:

– A path P between two nodes u (source node) and v (destination node) is a
sequence [v1, . . . , vk] such that u = v1, v = vk and 〈vi, vi+1, ·〉 ∈ E for every
i(1 ≤ i ≤ k − 1);

– a node u is reachable from a node v if there exists a path between u and v.
– given a path P = [v1, . . . , vk], its reliability is measured by a function f (as

introduced below) such that f(P ) is the value in [0, 1] obtained by evaluating
the weight w(vi, vi+1) of every edge 〈vi, vi+1, w〉 in P .

Based on these definitions, we construct a reduced network G̃ = 〈V, Ẽ〉 by removing
each edge 〈u, v, w〉 in G if it is less reliable than a path P between u to v, i.e., if
w < f(P ).

Note that, contrary to [2] and [23], we do not require the minimality of the num-
ber of edges in the reduced network, since we are not interested in pure transitive
reduction, but in removing possible false positive edges, identified during the re-
construction of the network. Indeed, we recall that enforcing the minimality of the
resulting graph may lead to lose significant interactions, since, in the specific case
of gene regulatory networks, it is very likely that a redundant graph (in terms of
reachability) may naturally represent a gene regulatory network. Therefore, the
fact that the information conveyed by a edge can be represented by a sequence of
nodes (a path) is not a sufficient condition to consider the edge as a false posi-
tive, due to the presence of common cause or common effect phenomena. For this
reason, we introduce an additional constraint to decide whether to remove a edge.
In particular, we remove an edge in G only if its reliability appears lower than
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the reliability of a path P = [v1, . . . , vk] in G, measured by f(P ), and it does not
appear within any path used by INLOCANDA during the analysis of other edges.

In this work, we take into account different measures to estimate the reliability
of the path. In particular, if w(vi, vj) is the weight associated to the edge between
vi and vj , we consider the following measures for a path [v1, . . . , vk] in G:

– Minimum (Min), which is the lowest edge weight in the path, following the
principle of the “weakest link in the chain”. Formally:

f([v1, . . . , vk]) = min
i=1,2,...,k−1

w(vi, vi+1)

– Product (Prod), which is the product of the edge weights involved in the path.
This approach is motivated by the common strategy adopted for the combina-
tion of probabilities of (naively independent) events. Formally:

f([v1, . . . , vk]) =

k−1∏
i=1

w(vi, vi+1)

– Average (Avg), which is the average weights of the edges involved in the path.
Formally:

f([v1, . . . , vk]) =
1

k
·
k−1∑
i=1

w(vi, vi+1)

– Weighted Average (WAvg), which is the average of the edge weights involved in
the path, linearly weighted on the basis of their closeness to the source node.
This approach can be motivated by the assumption that the influence of the
source node on the other nodes in the path fades linearly on the basis of their
distance. Formally:

f([v1, . . . , vk]) =
1∑k−1

i=1
1
i

·
k−1∑
i=1

[
1

i
· w(vi, vi+1)

]
Before formally describing the INLOCANDA algorithm, we briefly describe intu-
itively the followed approach. In particular, for each gene, we aim at identifying
the genes that erroneously appear as regulated by it in the reconstructed net-
work, due to the presence of an indirect regulation activity involving other genes
in the network. At this aim, starting from each node (that we call source node),
we explore the network, through a depth-first and best-first strategy, in order to
identify the reachable nodes and representative paths (i.e., the most reliable ones,
according to the edge weights). For each reachable node, if the path from the
source node appears to be more reliable than the direct edge, and such a direct
edge is not exploited in any other path to reach other nodes, we remove the direct
edge. As we already emphasized in the introduction, these choices are in contrast
with the minimality property achieved by classical graph reduction techniques [2,
23], since, in the specific case of gene regulatory networks, it would lead to lose
relevant regulatory activities involved in other indirect interactions.

The pseudo-code of the first stage of INLOCANDA, which follows in the foot-
steps of LOCANDA, is reported in Algorithm 1. We also report a running example
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in Figure 5. Before describing it, we recall that the method is able to analyze both
undirected and directed networks, weighted according to a score representing the
reliability of the interaction (computed by any method for network reconstruc-
tion). Here we assume we are working with a weighted directed network (the most
general case), since an unweighted network can always be mapped into a directed
network by introducing an edge for each direction.

The first step consists in the removal of self-edges (line 2), since some meth-
ods for network reconstruction identify them erroneously. Although self-regulation
activities are possible in biology, in reconstructed networks such edges are due to
errors in the computation of similarity/correlation measures on the vector associ-
ated to a single gene. In our example, the self-edge on the node E (Figure 5(b)) is
removed, leading to the network in Figure 5(c). Then the algorithm analyzes each
node (that we call source node), aiming at identifying all the reachable nodes and
a path to reach them. We note that the visit of the network is performed according
to a depth-first and best-first search strategy, on the basis of the reliability of the
edges. The algorithm works in a greedy fashion, since an exhaustive exploration of
all the possible paths would lead to an exponential time complexity. When there
are several edges to follow, we consider the path that locally (i.e., by observing
the neighborhood) appears the most reliable. This aspect is clarified later.

INLOCANDA exploits three data structures: the set of visited nodes (visited),
the current sequence of nodes (path) and a stack, according to which the nodes
are explored. Moreover, it exploits a structure (RT ) similar to the routing table
used by routing algorithms, which keeps information on the nodes reachable from
the source node. In particular, for each reachable node, it stores:

– The next-hop, i.e., the node adjacent to the source node that we need to
follow to reach it, according to the current path.

– The path score associated to the current path. On the basis of the path score,
the algorithm choices the optimal path to keep: INLOCANDA will prefer a new
path with respect to a previously identified path if this value is higher.

– The path reliability, i.e., the reliability associated to the current path ac-
cording to f(·), that will be exploited to remove edges.

We note that the path score (for the choice of the optimal path) and the path
reliability (for the estimation of the reliability of the path) are intentionally kept
as two separate measures. This because, generally, they could not be based on the
same assumptions. In particular, while, as previously described, the path reliability
can be based on several measures, the path score corresponds to the sum of edges
in the path, since, combined with the adopted strategy for the choice of the edge
to follow (i.e., the highest), it leads to the identification of long and reliable paths.

The analysis of a source node is performed as follows. First, the data structures
are initialized (line 4), by considering the source node as already expanded and by
adding it to the current path. Second, we analyze all its adjacent nodes, i.e., we
push them into the stack, put in ascending order according to the edge weight, and
initialize the routing table by setting them as their next-hop (lines 5-7). Then, the
main part of the algorithm (lines 8-28) iterates until the stack still has some nodes
to analyze. In particular, INLOCANDA extracts a node (current node) from the
stack (see Figure 5(d)), marks it as visited (lines 9-10), and computes the score
associated with the current path to reach the current node from the source (lines
11-13). If the current path is the first identified path to reach current node or it has
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higher score than a previously identified path in the routing table, INLOCANDA
updates the routing table (lines 14-16). Then the algorithm expands the current
node, by pushing its adjacent nodes into the stack in ascending order with respect
to the edge weight, if not already visited (lines 17-19).

If at least one node is pushed (see Figures 5(e), 5(f), 5(g)), the current path
is updated by adding current node (lines 20-22), otherwise (see Figure 5(h)) the
algorithm steps back, until it can find an existing edge between the last node in
the path and the next node in the stack (lines 23-28). In both cases, the path and
its score are updated incrementally (lines 22 and 26-28).

When there are no more nodes in the stack, INLOCANDA removes all the
direct edges, such that the properties previously described are satisfied. In par-
ticular, it removes an edge between the source node u and its adjacent v, if v is
never used as next-hop to reach other nodes and if the path identified to reach
v from u appears more reliable then the direct edge (lines 29-32). The algorithm
then proceeds with the next source node. It is noteworthy that the removed edges
will never be considered again by the algorithm. This can be done without any
risk of losing relevant paths, since those edges would never be considered in any
case, even analyzing the nodes of the networks in a different order. For example,
the removed edge between A and B in Figure 5(i) would not be followed in any
case during the analysis of the node G as the source node. Therefore, the order of
analysis of source nodes does not affect the resulting reduced network.

A final remark regards the concept of reachability that we introduced at the
beginning of this section. Indeed, even if INLOCANDA does not require the min-
imality of the reduced network, we still guarantee that the reachability of nodes
is preserved, i.e., no (indirect) interactions are lost after the reduction of the net-
work. In the following, we state and prove the reachability equivalence between
the original network and the network produced by INLOCANDA.
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Algorithm 1: Pseudo-code of the first stage of INLOCANDA.
Data:
·V : the set of genes (nodes in the network)
·E ∈ V × V × R: the set of interactions (edges in the network), represented as
〈source node, destination node, edge weight〉

·f(·): the measure for the reliability of a path

Result:
·Ẽ: the updated (reduced) set of interactions

1 begin

2 Ẽ ← E \ E.getSelfEdges();
3 foreach src ∈ V do
4 visited ← {src}; path ← [src]; path score ← 0; stack ← [ ]; RT ← [ ];

/* Initialize the routing table for adjacents of src */

5 foreach 〈src, adj, w〉 ∈ Ẽ in ascending order w.r.t. w do
6 RT.update(adj, adj, w, f([src,adj]));
7 stack.push(adj);

8 while stack is not empty do
9 current node ← stack.pop();

10 visited ← visited ∪ {current node};
11 edge weight ← Ẽ.getEdgeWeight(path.getLast(), current node);
12 old path score ← RT.getPathScore(current node);
13 new path score ← path score + edge weight;

/* Update the RT if the route does not exist or if the new path has a
higher score than the previous path */

14 if old path score = null or old path score < new path score then
15 next hop ← path.getFirst();
16 RT.update(current node, next hop, new path score, f(path));

/* Push non-visited adjacent nodes of the current node into the stack,
ordered by the edge weight */

17 foreach 〈current node, adj, w〉 ∈ Ẽ in ascending order w.r.t. w do
18 if adj /∈ visited then
19 stack.push(adj);

/* Update the current path */
20 if some nodes were added to stack then
21 path.add(current node);
22 path score ← new path score;

23 else if stack is not empty then
24 next ← stack.top();

25 while 〈path.getLast(), next〉 /∈ Ẽ do
26 last ← path.getLast();
27 path.removeLast();

28 path score ← path score − Ẽ.getEdgeWeight(path.getLast(), last);

/* Remove a direct edge if it is not used to reach other nodes and it’s less
reliable than the indirect edge (path) */

29 all next hops ← RT.getAllNextHops();

30 foreach 〈src, adj, w〉 ∈ Ẽ do
31 if adj /∈ all next hops and w < RT.getPathReliability(adj) then

32 Ẽ ← Ẽ \ {〈src, adj, w〉};

33 return Ẽ;
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(a) The initial reconstructed network. (b) The self edge on node E.

(c) The self edge on node E removed. (d) Node A expanded. Node C popped
from the stack (since the weight of A→C
was the highest).

(e) Node C expanded. Node B popped
from the stack (since the weight of C→B
was the highest).

(f) Node B expanded. Node D popped
from the stack (it was the only pushed
node, since C had been already visited).

(g) Node D expanded. Node E popped
from the stack (it was the only pushed
node, since C had been already visited).

(h) Node E expanded. No node pushed
into stack, since D had been already vis-
ited. It steps back to analyze F from C.

(i) Removal of the edge A→B. (j) Reduced network, after the analysis
of all the nodes (f(·) = Minimum).

Fig. 5 An example of the execution of INLOCANDA and the analysis of the source node A.
Grey nodes: already expanded; blue node: the current node to analyze, extracted from the
stack; black edges: not seen yet; grey edges: already seen, but still not followed; blue edges:
belonging to the current path; red edges: will not be followed, since this would lead to already
expanded nodes; black-dashed edges: to be removed.
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n1 n2 nh nh+1 nk1 nk

... 

... 

... 

Alternative path from 
nh to nh+1 and 
from u to v

u v

Fig. 6 An example showing a specific case to prove the reachability equivalence. An alternative
path between nh and nh+1 implicitly defines an alternative path between u and v.

Property 1 Node reachability in the reduced network G̃ = 〈V, Ẽ〉 produced by
INLOCANDA is equivalent to that of the initial network G = 〈V,E〉.

More formally, for each pair (u, v) ∈ V × V of nodes, there exists a path
[n1, n2, ..., nk] in (V,E) such that u = n1, v = nk and 〈ni, ni+1, ·〉 ∈ E for every
i(1 ≤ i ≤ k − 1) if and only if there exists a path [m1,m2, ...,mk] ∈ (V, Ẽ) such
that u = m1, v = mr and 〈mj ,mj+1, ·〉 ∈ Ẽ for every j(1 ≤ j ≤ r − 1).

Proof. Since Ẽ ⊆ E, the if-direction is obvious. Then, we show the only-if direc-
tion. Assume that the node v can be reached by the node u in G through just one
path [n1, n2, ..., nk], such that n1 = u and nk = v, but v cannot be reached from u

in G̃. Since we assume that the path is unique in G, this means that INLOCANDA
has removed at least one of the edges in the path [n1, n2, ..., nk], i.e., there exists

at least one edge 〈nh, nh+1, wh〉 ∈ E s.t. 〈nh, nh+1, wh〉 /∈ Ẽ. However, according
to the algorithm followed by INLOCANDA (see Algorithm 1, line 31), the edge
between nh and nh+1 would have been removed only if there had been an alter-
native between nh and nh+1, with higher reliability. Therefore, one of these cases
may have occurred:

– The path between u and v is not unique in G. In this case, even if INLOCANDA
removes the edge between nh and nh+1, the reachability of v from u is still

guaranteed in G̃ by the alternative paths.
– The path between u and v is unique in G, but INLOCANDA does not remove

the edge between nh and nh+1 (contradiction reached). Indeed, if there had
been an alternative path between nh and nh+1 leading to the removal of the
direct edge between nh and nh+1, it would have also defined an alternative
path between u and v (see Figure 6). �

3.2 Learning a vector representation for edges

Once we have analyzed the initial reconstructed network and removed the set of
possible false positive edges, we aim at learning an inductive predictive model
that it is able to decide whether an edge exists or not. Therefore, our learning
examples (i.e., the units of analysis) will be the edges, i.e., interactions between
pairs of nodes, that need to be represented by a set of features.

In this section, we describe the strategy adopted to learn a feature representa-
tion for each edge of the network. As we outlined in Section 2.4, in the literature
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there are several approaches for learning a feature representation for network. In
this work, inspired by the work in [18], we aim at fully exploiting both community
structures and possible common roles performed by different nodes in the network.

The basic idea in [18] is to identify a feature vector for each node in the network.

In this paper, given the reduced network G̃ = 〈V, Ẽ〉, this idea corresponds to
learning a function that maps each node (and its neighbor) to a feature vector,
i.e., g : V → Rd, such that nodes with the same neighborhood are “close” in the
feature space, while nodes with different neighborhood are “far” in the feature
space, according to a search strategy of the neighborhood1.

However, we need to explicitly represent examples in terms of edges. In [18],
given two nodes u and v, the authors proposed different binary operators that
can be applied over the corresponding feature vectors g(u) and g(v), in order to
obtain a feature vector for the edge between u and v. In particular, they propose
the average, the Hadamard operator, the Weighted-L1 and the Weighted-L2, that
lead to feature vectors in the same feature space used to represent single nodes.
However, all the proposed operators are symmetric, i.e., they do not take into
account the direction of the edge. Therefore, we adopt a different strategy, i.e.,
we concatenate the feature vectors associated to the nodes u and v. This means
that, if nodes are represented in Rd, then edges are represented in R2d. Formally,
the idea is to learn a function g′ according to the classical maximum likelihood
optimization problem, on the basis of the Skip-gram strategy for networks [39]:

g′ : V × V → R2d, (1)

where g′(u, v) = g(u) _ g(v) and _ represents the concatenation operator.
Specifically, let u be a node, N(u) be its neighborhood of fixed size k according

to a search strategy, the goal is to find the function g(u) maximizing the log-
likelihood of observing N(u) as follows:

max
g(·)

∑
u∈V

logP (N(u) | g(u)). (2)

Multiple search strategies can be adopted to identify the neighborhood of nodes.
The classical breadth-first and depth-first strategies lead to focusing either on
structural similarities (similar roles performed by nodes) or on communities. In
order to catch both the aspects, we adopt the strategy proposed by [18], where the
authors rely on an approach based on random walks. In particular, they propose
the adoption of a biased 2nd-order random walk, which takes into account the edge
weights, combined with a factor that depends on two parameters: p, that controls
the likelihood of immediately revisiting a node in the walk, and q, that controls the
likelihood of keeping the search local. More formally, assuming that the random
walk traverses the edge 〈u′, u′′, w′〉, the transition probability from u′′ to another
node u′′′, via the edge 〈u′′, u′′′, w′′〉, is computed as πu′u′′′ = αpq(u′, u′′′) · w′′,
where:

αpq(u′, u′′′) =


1
p if du′u′′′ = 0, that is u′ = u′′′

1 if du′u′′′ = 1
1
q if du′u′′′ = 2

(3)

1 A formal definition of neighborhood will be introduced later.
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u' = u''' u''

αpq (u', u'') = 1/p

u' u''

αpq (u', u'') = 1
u'''

a) b)

c) u' u'' u'''
αpq (u', u'') = 1/q

Fig. 7 Examples of 2nd-order random walks, according to the shortest distance from the
initial node u′. a) Node u′′′ corresponds to the initial node u′: the probability of revisiting
u′ is governed by the parameter p. b) Node u′′′ is another adjacent node of u′ (breadth-first
visit). The probability of visiting it is only affected by the edge weight (i.e., αpq(u′, u′′′) = 1).
c) Node u′′′ is reachable only after two steps from u′: the probability of performing the visit
in depth is governed by the parameter q.

and du′u′′′ is the shortest path distance between u′ and u′′′ (see Figure 7 for a
graphical description of the three cases).
According to such probabilities, given a source node u, we perform a random walk
of length l. If ni the i-th node in the walk (where n0 = u), nodes are traversed
according to the following distribution:

P (ni = u′′|ni−1 = u′) =

{
πu′u′′/C if 〈u′, u′′, w′〉 ∈ Ẽ
0 otherwise,

(4)

where C is a normalization constant.

4 Time complexity analysis

In order to show the time complexity of INLOCANDA, we analyze the three stages
introduced in Section 3, separately. For Stage 1 (i.e., reduction of false positive
edges through the exploitation of causality phenomena), we need to consider each
node as a source node. For each node, we search for possible paths to reach all the
other nodes in the network. However, we recall that each edge can be traversed
only once, leading to a total of |E| possible steps for each source node. Therefore,
in the worst case, this stage requires O(|V | · |E|) steps. We emphasize that this
is truly the worst case, since all the edges in E are not always traversed for each
source node in V and since INLOCANDA immediately removes edges that are
considered to be false positive interactions as soon as it finishes the analysis of
each source node (see lines 29-32 of Algorithm 1).

Stage 2 (i.e., the learning of a vector representation for edges) exploits random
walks that are generally computationally efficient. Moreover, by imposing graph
connectivity in the sampling process [18], a strong optimization can be obtained by
reusing samples across different (linked) source nodes. Indeed, if k is the number
of samples to generate per node, and l is the length of the walk, by simulating a
random walk of length l > k, it is possible to generate k samples for l − k nodes,
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altogether. This means that the complexity for one node is O
(

l
k·(l−k)

)
, leading

to the overall complexity O
(
|V | · l

k·(l−k)

)
= O(|V |).

The time complexity of Stage 3 actually depends on the adopted algorithm.
Considering CLUS as the classifier, we know that its complexity isO(2d·(|E|log|E|)),
that is, linear on the number of descriptive attributes and n logn on the number
of training instances [7]. Hence, we have:

O(|V | · |E|) +O(|V |) +O(d · |E| log |E|)) = O(|V | · |E|) +O(d · |E| log |E|)) (5)

By assuming that |V | ≥ (d · log |E|), we have the final computational complexity
of INLOCANDA as O(|V | · |E|).

5 Experiments

In this section, we describe our experimental evaluation. In particular, in Section
5.1 we describe the considered datasets; in Section 5.2 we provide details about
the experimental setting; in Section 5.3 we perform an analysis of the contribution
provided by the proposed strategy for the construction of the feature space, in
order to show that catching the structural roles of nodes can be beneficial in the
specific task of gene network reconstruction; finally, in Section 5.4, we evaluate the
quality of the reconstructed networks, when different approaches for the reduction
of the initial networks, including INLOCANDA (which is based on common cause
and common effect phenomena identification) and some competitors, are applied.

5.1 Datasets

The datasets considered in our experiments are those adopted in [12], that are
divided into SynTReN and DREAM5 datasets.

SynTReN data consist of steady-state expression data (10 conditions), gener-
ated by the tool SynTReN [9], on the basis of the well-known regulatory networks
of organisms E. coli and S. cerevisiae (henceforth Yeast) [21]. SynTReN selects
connected sub-networks of the input networks and generates gene expression data
which best describe the network structure. In the generation of expression data,
SynTReN exploits Michaelis-Menten and Hill kinetics so that the generated ex-
pression data are very similar to real microarray mRNA measurements [9]. The
interactions of the selected sub-networks are considered as gold standard for our
evaluation, while the generated expression data are used as input for the initial re-
construction method we adopt. The adoption of synthetically generated data sets,
in contrast to real measurements and human-constructed networks (e.g., [17]), al-
lows us to directly observe the quality of the reconstruction, since the topology of
the underlying network is perfectly known a priori [21].

We consider sub-networks of 100 and 200 genes, characterized by 121 and 303
edges, with an average degree of 2.42 and 3.03, respectively. In order to evaluate
the robustness to noise, as in [12], we consider three versions of each dataset, with
different levels of (additive, lognormally-distributed) noise, i.e., 0.0 (no noise), 0.1
and 0.5, introduced by SynTReN in the expression data. It is noteworthy that
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SynTReN does not explicitly introduce noise that can be directly associated to
common cause or common effect phenomena.

DREAM5 data include real gene expression data about the E. coli organism,
proposed in the DREAM5 challenge. It consists of 4,511 genes, for a total of more
than 20 million possible interactions. This network has been largely used in the
literature for the evaluation of methods for gene network reconstruction [31,35].

Starting from gene expression data, we reconstructed the networks by adopt-
ing the system GENERE [12] which, with the best parameter reported in the
original paper, obtains state-of-the-art results when compared to other combina-
tion strategies, as well as with respect to all the base methods evaluated in [31].
GENERE produces a weighted (according to its confidence about the existence of
each interaction), directed and possibly cyclic network.

5.2 Experimental setting

All the experiments were performed using four different classifiers, namely CLUS
[7], JCHAID (in its most recent version JCHAID* [24]), JRIP [13] and KNN [1]
(keeping the default values for their parameters, and setting K = 1 for KNN),
which are based on Predictive Clustering Trees (PCTs), Top-Down Induction of
Decision Trees, Rule-Based classification and Lazy Instance-based classification,
respectively. These methods resulted to be, after a preliminary analysis, the most
appropriate ones to solve the considered task, due to their ability to handle highly
imbalanced datasets (we remind that, in our case, the amount of positive examples
is much lower with respect to the amount of negative examples). Moreover, since
they are based on different models, we were also able to evaluate the effectiveness
of the proposed approach, dependently on the classification model.

Our first competitor for the reduction of the network is a baseline approach that
removes edges having a weight below a given threshold (in {0.0, 0.1, 0.2, ..., 1.0},
leading to 11 networks) from the initial reconstructed network. We call this ap-
proach GENERE, since it is essentially the original network reconstructed by the
system GENERE, with the baseline filtering approach based on the threshold on
edges. As a second competitor, we considered the system ARACNE [32], that,
as we described in Section 2.3, analyzes all the possible triplets of connected genes
and removes the edge with the lowest weight. In order to make a fair comparison
with respect to GENERE, we evaluated the performance obtained by ARACNE
starting from all the networks generated by GENERE with the all the considered
thresholds. Since ARACNE is not able to process directed networks, we trans-
formed the directed networks produced by GENERE into undirected networks.
When, in the network, there were two edges (i.e., for both directions) with a dif-
ferent edge weight between the same genes, we used the highest edge weight for
the resulting edge.

For INLOCANDA, we performed the experiments with all the measures for
the estimation of the reliability of the path proposed in Section 3, that are: mini-
mum (Min), product (Prod), average (Avg) and weighted average (WAvg). As for
ARACNE, we evaluated the obtained performance starting from all the networks
generated by GENERE with all the considered thresholds.

We adopted a 10-fold cross validation strategy, where folds were built through
a stratified random sampling, such that in the training set the percentage of pos-
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itive/negative edges is the same as for the whole dataset. The stratified sampling
was necessary due to the high imbalance between positive and negative instances.
In order to guarantee fair comparisons, the folds are the same for all the considered
competitors.

The results were collected in terms of:

– Average precision, recall and F-score, in order to evaluate the accuracy of the
link prediction task.

– Percentage of edge removed by ARACNE and by all the variants of INLO-
CANDA, with respect to the original network reconstructed by GENERE, in
order to evaluate the number of false positive edge detected.

– Area Under the ROC Curve (AUC), by varying the threshold for the removal
of edges from the initial reconstructed network, in order to evaluate the overall
accuracy of the learned models, independently on the chosen threshold.

Although one of the main goal of the method proposed in this paper is the reduc-
tion of false positive interactions, we adopted these evaluation measures, instead
of considering only the amount of false positive interactions, since they are able
to provide an overall view of the quality of the reconstructed network. Indeed, the
minimization of false positive interactions can naively be obtained by a method
which always predicts false for every possible interactions. Obviously, this would
lead to have no predicted interactions and, therefore, no true positive edges. The
considered evaluation measures, on the contrary, simultaneously evaluate these as-
pects. For all the evaluation measures we also performed the Friedman test with
the Nemenyi post-hoc test, with α = 0.05, in order to compare the obtained results
from a statistical viewpoint.

5.3 Evaluation of the embedding approach

In this section, we give a specific emphasis to the possible contribution provided
by the proposed embedding strategy. It is noteworthy that the reported results
are obtained with all the learners used in our evaluation, but without any network
reduction. This was necessary in order to avoid any bias in the results that could be
possibly introduced by the network reduction algorithm. We performed a specific
analysis of the quality of the reconstructed networks, when a different embedding
approach, which is not able to catch the possible structural roles of nodes in the
network, is used.

In particular, we considered for comparison the DFS algorithm used in [18].
This algorithm is similar to the approach adopted in this paper, but uses a dif-
ferent search strategy to define the neighborhood of each node. More specifically,
while the approach used in our work adopts a combination of Breadth-First and
Depth-First search strategies, the approach used by DFS is only based on the
Depth-First search strategy (DFS is actually the acronym of Depth-First Search).
The difference between the two search strategies is that, while DFS has a partial
visibility on the reachable nodes, the algorithm used in our approach has a more
complete visibility of close nodes. The effect is that DFS is not able to properly
represent the structure of the network in the proximity of a given node. As a con-
sequence, DFS is not able to properly represent hub nodes which, as said before,
play a crucial role in gene regulatory networks.
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Learning algorithm
CLUS JCHAID JRIP KNN

p-value 0.0001 0.0001 0.0001 0.0001

Table 1 p-values of the Wilcoxon tests (with False Discovery Rate correction) performed
between the proposed embedding approach and DFS.

In Figure 8 we report the F-score results for the link prediction task when both
DFS and the solution we adopt in this paper are used (we identify DFS with the
label “no-hub”). By observing the results, we can see that the proposed embedding
strategy is always able to outperform the DFS approach, independently of the
considered dataset and of the adopted learning algorithm. This confirms that, in
the specific case of gene regulatory networks, properly catching possible structural
roles of genes is fundamental to obtain a high quality reconstructed network. In
order to confirm this result from a statistical viewpoint, we performed Wilcoxon
tests (one for each classifier) with False Discovery Rate correction. The obtained
p-values are shown in Table 1, where we can see that the improvement provided
by the embedding strategy used in this paper is always statistically significant
at α = 0.05. Therefore, all the following experiments were performed with the
embedding approach proposed in Section 3.2.

5.4 Evaluation of causality-based network reduction

In this section, we focus on the evaluation of the strategy adopted for the reduction
of the input network. The obtained results, considering CLUS as classifier, are
plotted in the box plots depicted in Figures 9-13, while the results obtained with
the other classifiers are reported in the Appendices. The box plots are drawn
by considering the different values for the threshold on the edge weight used to
generate the input network. This allows us to evaluate the stability of the results
with respect to such a parameter for all the systems used.

First, we focus on the SynTReN datasets. On these datasets, we can ob-
serve that ARACNE, GENERE and INLOCANDA Prod are more sensitive to
the value of the input threshold (wider boxplots), whereas the other variants of
INLOCANDA obtain very stable results. Moreover, we can observe that the initial
networks reconstructed by GENERE appear, in general, quite accurate and often
lead to the highest F-Score value (see, for example, the F-score obtained on the
datasets Ecoli-200-0.5, Yeast-100-0.0, Yeast-100-0.1 and Yeast-200-0.0). However,
such a result can be obtained with a specific value of the input threshold and a
wrong decision can lead to very poor results. On the contrary, a non-optimal choice
of the value for the input threshold does not affect significantly the results ob-
tained by INLOCANDA Min, INLOCANDA Avg and INLOCANDA WAvg, that
lead to stable, high F-score values in almost all the cases. ARACNE generally ob-
tains lower F-score values, that is, it erroneously removes true gene interactions,
possibly because it fails to catch causality phenomena. The different stability of
the algorithms with respect to the threshold on the input network is also confirmed
by the AUC results reported in Table 2, where it is possible to observe that, in
general, INLOCANDA Min, INLOCANDA Avg and INLOCANDA WAvg lead to
the best, stable, results.
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From the results reported in Table 2 we can also notice that the improvement,
in terms of AUC, provided by the causality-based network reduction method im-
plemented in INLOCANDA is independent of the specific learning algorithm. This
will be more clear later, when we present the results of the statistical tests.

By comparing the results in terms of precision and recall, we can observe
that the approaches able to obtain higher precision are the same as those able to
achieve higher recall results. This is a very interesting result, since the removal of
false positive edges from the network could have led to affect the results in terms
of recall. On the contrary, we can observe that INLOCANDA, especially on the
variants based on Avg and WAvg, is able to effectively filter out false positive
edges, keeping a good result in terms of recall. Looking specifically at the results
obtained on the large dataset from DREAM5 (Figure 13), we can observe that,
even if the difference is not so evident, INLOCANDA WAvg is still able to obtain
the most precise result, keeping a good recall2.

Analyzing the influence on the results caused by the presence of noise in the
data, we can observe that, without noise or with a low amount of noise, GENERE
obtains acceptable results (although they are unstable, with respect to the input
threshold). However, when the amount of noise increases, it tends to obtain lower,
more unstable F-score values. On the contrary, INLOCANDA, especially with the
variants based on Avg and WAvg, generally shows good, stable results, even in
the case of the datasets with the highest amount of noise. This proves that the
proposed method is actually very robust to the possible presence of noise in the
data and that the variants based on the averages (Avg and WAvg) are able to
make smooth decisions when they have to remove an interaction.

As mentioned in Section 5.2, we performed a set of Friedman tests with the
Nemenyi post-hoc test, which show the overall superiority of the proposed method.
In particular, following the graphical view proposed in [14], in Figures 14-17 we
plot four graphs for each learning method showing the result of the statistical
test in terms of Precision, Recall, F-score and AUC. All the measures show that
INLOCANDA WAvg generally leads to the best results. Moreover, from a sta-
tistical viewpoint, the difference with respect to ARACNE is significant with
α = 0.05 according to all the considered measures. On the contrary, the differ-
ence with respect to GENERE is statistically significant only when we use CLUS
and JCHAID, whereas in the case of JRIP and KNN, INLOCANDA WAvg still
outperforms GENERE, but the difference in the ranks is not statistically signifi-
cant. This smaller gap between INLOCANDA WAvg and GENERE for JRIP and
KNN can be motivated by lower performances of the classifiers, which make the
contribution of the network reduction less evident.

Overall, we can conclude that the effectiveness of the proposed approach is
almost independent on the final classifier adopted, provided that it is able to work
on highly imbalanced datasets. In is noteworthy that all these considerations are
valid for all the measures considered.

2 The fact that this dataset is relatively difficult to analyze is confirmed by the maximum
AUPRC obtained by the method proposed in [31] and by GENERE [12], which are 0.09 and
0.12, respectively.
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Fig. 8 F-score results obtained with the proposed embedding strategy and with the DFS
approach, which is not able to exploit hub nodes (identified as no-hubs). The results are
obtained with all the learners used in our evaluation, but without any network reduction.
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ARACNE GENERE
INLOCANDA

Avg Min Prod WAvg
CLUS
Ecoli - 100 - 0.0 0.56 0.77 0.77 0.77 0.77 0.77
Ecoli - 100 - 0.1 0.54 0.56 0.76 0.68 0.56 0.83
Ecoli - 100 - 0.5 0.55 0.54 0.70 0.68 0.54 0.69
Ecoli - 200 - 0.0 0.72 0.83 0.77 0.74 0.75 0.76
Ecoli - 200 - 0.1 0.56 0.58 0.74 0.69 0.56 0.74
Ecoli - 200 - 0.5 0.58 0.55 0.75 0.77 0.66 0.76
Yeast - 100 - 0.0 0.58 0.73 0.77 0.71 0.56 0.72
Yeast - 100 - 0.1 0.53 0.71 0.76 0.70 0.65 0.71
Yeast - 100 - 0.5 0.57 0.50 0.73 0.66 0.57 0.71
Yeast - 200 - 0.0 0.57 0.75 0.78 0.77 0.71 0.79
Yeast - 200 - 0.1 0.58 0.59 0.79 0.77 0.60 0.80
Yeast - 200 - 0.5 0.58 0.57 0.71 0.72 0.69 0.72
Dream5 - Ecoli 0.59 0.58 0.59 0.59 0.59 0.59

KNN
Ecoli - 100 - 0.0 0.55 0.68 0.67 0.66 0.55 0.76
Ecoli - 100 - 0.1 0.59 0.82 0.62 0.78 0.76 0.74
Ecoli - 100 - 0.5 0.55 0.55 0.64 0.56 0.63 0.57
Ecoli - 200 - 0.0 0.69 0.85 0.87 0.88 0.87 0.85
Ecoli - 200 - 0.1 0.52 0.77 0.70 0.64 0.70 0.75
Ecoli - 200 - 0.5 0.53 0.52 0.51 0.55 0.53 0.52
Yeast - 100 - 0.0 0.51 0.74 0.69 0.61 0.54 0.69
Yeast - 100 - 0.1 0.53 0.56 0.64 0.63 0.55 0.65
Yeast - 100 - 0.5 0.53 0.50 0.62 0.54 0.56 0.60
Yeast - 200 - 0.0 0.60 0.63 0.68 0.80 0.71 0.68
Yeast - 200 - 0.1 0.54 0.73 0.76 0.70 0.66 0.79
Yeast - 200 - 0.5 0.57 0.53 0.58 0.62 0.62 0.60
Dream5 - Ecoli 0.53 0.53 0.53 0.53 0.53 0.53

JCHAID
Ecoli - 100 - 0.0 0.57 0.79 0.81 0.81 0.80 0.81
Ecoli - 100 - 0.1 0.59 0.58 0.75 0.80 0.57 0.81
Ecoli - 100 - 0.5 0.59 0.58 0.76 0.79 0.64 0.72
Ecoli - 200 - 0.0 0.75 0.74 0.83 0.75 0.76 0.78
Ecoli - 200 - 0.1 0.56 0.58 0.77 0.71 0.56 0.76
Ecoli - 200 - 0.5 0.54 0.55 0.80 0.79 0.73 0.78
Yeast - 100 - 0.0 0.61 0.60 0.77 0.75 0.56 0.78
Yeast - 100 - 0.1 0.61 0.73 0.81 0.70 0.58 0.76
Yeast - 100 - 0.5 0.59 0.50 0.71 0.67 0.60 0.69
Yeast - 200 - 0.0 0.61 0.79 0.79 0.75 0.73 0.79
Yeast - 200 - 0.1 0.61 0.61 0.79 0.75 0.63 0.79
Yeast - 200 - 0.5 0.59 0.61 0.72 0.72 0.70 0.73
Dream5 - Ecoli 0.51 0.51 0.51 0.51 0.51 0.51

JRIP
Ecoli - 100 - 0.0 0.53 0.80 0.81 0.81 0.81 0.81
Ecoli - 100 - 0.1 0.67 0.75 0.78 0.76 0.76 0.77
Ecoli - 100 - 0.5 0.55 0.63 0.67 0.67 0.63 0.60
Ecoli - 200 - 0.0 0.70 0.78 0.78 0.78 0.79 0.80
Ecoli - 200 - 0.1 0.67 0.73 0.74 0.71 0.74 0.72
Ecoli - 200 - 0.5 0.54 0.67 0.78 0.79 0.80 0.79
Yeast - 100 - 0.0 0.72 0.59 0.74 0.72 0.65 0.69
Yeast - 100 - 0.1 0.68 0.79 0.74 0.68 0.72 0.72
Yeast - 100 - 0.5 0.56 0.50 0.64 0.73 0.76 0.65
Yeast - 200 - 0.0 0.67 0.76 0.74 0.73 0.72 0.75
Yeast - 200 - 0.1 0.60 0.62 0.77 0.77 0.58 0.76
Yeast - 200 - 0.5 0.66 0.60 0.72 0.74 0.71 0.71
Dream5 - Ecoli 0.52 0.52 0.52 0.52 0.52 0.52

Table 2 AUC results obtained on all the considered datasets. For each pair of classifier and
approach adopted for the network reduction, the best result is highlighted in bold.
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Fig. 9 Box plots depicting the results obtained by CLUS on Syntren E.coli datasets with 100
nodes, by varying the threshold on the weight of the original network edges.



28 Gianvito Pio et al.

Fig. 10 Box plots depicting the results obtained by CLUS on Syntren E.coli datasets with
200 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 11 Box plots depicting the results obtained by CLUS on Syntren Yeast datasets with
100 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 12 Box plots depicting the results obtained by CLUS on Syntren Yeast datasets with
200 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 13 Box plots depicting the results obtained by CLUS on DREAM5 E.coli dataset, by
varying the threshold on the weight of the original network edges.
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Precision Recall

F-score AUC

Fig. 14 Results of the Friedman test and Nemenyi post-hoc test on the Precision, Recall,
F-score and AUC values obtained on all the datasets by CLUS, with α = 0.05.

Precision Recall

F-score AUC

Fig. 15 Results of the Friedman test and Nemenyi post-hoc test on the Precision, Recall,
F-score and AUC values obtained on all the datasets by KNN, with α = 0.05.
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Precision Recall

F-score AUC

Fig. 16 Results of the Friedman test and Nemenyi post-hoc test on the Precision, Recall,
F-score and AUC values obtained on all the datasets by JCHAID, with α = 0.05.

Precision Recall

F-score AUC

Fig. 17 Results of the Friedman test and Nemenyi post-hoc test on the Precision, Recall,
F-score and AUC values obtained on all the datasets by JRIP, with α = 0.05.
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Fig. 18 Results of the Friedman test and Nemenyi post-hoc test on the number of edges
removed by ARACNE and by all the variants of INLOCANDA, with α = 0.05.

In Table 3, we can observe the percentage of edges removed by ARACNE and
by the different versions of the Stage 1 of INLOCANDA from the original network
reconstructed by GENERE. In particular, we can observe that the variants based
on the minimum and (especially) on the product, do not remove many edges, i.e.,
they are more conservative. This is clearly motivated by the fact that they generally
underestimate the reliability of a path, leading to remove less direct edges. On the
contrary, the variants based on the average and on the weighted average, as well
as ARACNE, lead to remove up to 98% of edges. Figure 18 summarizes these
results and show that INLOCANDA WAvg and ARACNE are the most selective
algorithms and there is no statistical difference between them. However, while
ARACNE pays the price of such a result with a significantly worse precision,
recall, F-score and AUC, INLOCANDA Avg and INLOCANDA WAvg are able
to obtain a high quality reconstruction, by keeping only 2-5% of the original edges.

A final consideration can be drawn from the non-optimal results obtained by
INLOCANDA Prod. This phenomenon can be motivated by the fact that it is
based on assumptions that are often violated in biological networks (i.e., the in-
dependence of the events). On the contrary, the very good results obtained by
the variants Avg and WAvg can be motivated by the fact that their assumptions
correctly reflect the real interactions among the genes. In this respect, we can
conclude that the variants based on Avg and WAvg are the most appropriate for
the reconstruction of gene networks, possibly due to their smoothness in making a
decision on cutting an edge. However, this does not mean that such measures are
the most appropriate for all kinds of application domains. Indeed, we want to em-
phasize that INLOCANDA could be applied to other kinds of networks and that
its behaviour could be easily adapted to other domains by identifying a proper
function f(·), able to catch specific assumptions of the domain in hand.
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ARACNE INLOCANDA (Stage 1)

Dataset Threshold Avg Min Prod WAvg

Ecoli - 100 - 0.0

0.00 96.97% 96.01% 69.11% 7.22% 96.57%
0.30 96.07% 95.53% 75.87% 9.19% 95.85%
0.60 89.61% 85.85% 64.02% 20.44% 86.78%
1.00 69.18% 0.00% 0.00% 0.00% 0.00%

Ecoli - 100 - 0.1

0.00 96.24% 95.14% 78.54% 21.66% 95.45%
0.30 96.21% 95.34% 77.21% 21.81% 95.59%
0.60 88.15% 81.63% 64.91% 48.93% 82.45%
1.00 60.50% 0.00% 0.00% 0.00% 0.00%

Ecoli - 100 - 0.5

0.00 96.36% 91.34% 76.85% 46.99% 92.56%
0.30 96.35% 91.37% 76.96% 47.39% 92.60%
0.60 91.61% 82.09% 66.40% 52.68% 83.49%
1.00 73.27% 0.00% 0.00% 0.00% 0.00%

Ecoli - 200 - 0.0

0.00 98.29% 98.74% 85.68% 1.85% 98.82%
0.30 67.52% 59.90% 42.77% 21.68% 61.49%
0.60 48.80% 40.92% 35.45% 33.73% 41.78%
1.00 3.86% 0.00% 0.00% 0.00% 0.00%

Ecoli - 200 - 0.1

0.00 97.54% 98.49% 83.28% 5.32% 98.71%
0.30 96.97% 98.36% 84.35% 6.35% 98.54%
0.60 81.40% 85.02% 47.64% 28.08% 85.73%
1.00 87.50% 0.00% 0.00% 0.00% 0.00%

Ecoli - 200 - 0.5

0.00 97.08% 98.72% 85.27% 7.91% 98.85%
0.30 97.07% 98.73% 85.41% 8.00% 98.85%
0.60 88.59% 94.78% 70.81% 8.59% 95.84%
1.00 62.50% 0.00% 0.00% 0.00% 0.00%

Yeast - 100 - 0.0

0.00 96.95% 96.07% 78.63% 9.49% 96.86%
0.30 96.93% 96.38% 81.04% 9.64% 97.04%
0.60 89.30% 86.21% 59.65% 30.81% 88.71%
1.00 0.00% 0.00% 0.00% 0.00% 0.00%

Yeast - 100 - 0.1

0.00 96.55% 95.71% 71.60% 15.09% 96.35%
0.30 96.26% 95.94% 69.11% 15.29% 96.22%
0.60 86.23% 82.14% 53.66% 42.11% 83.33%
1.00 93.33% 0.00% 0.00% 0.00% 0.00%

Yeast - 100 - 0.5

0.00 95.68% 97.58% 84.45% 8.81% 97.85%
0.30 95.67% 97.58% 84.60% 8.89% 97.85%
0.60 77.46% 88.30% 54.98% 16.79% 89.00%
1.00 100.00% 0.00% 0.00% 0.00% 0.00%

Yeast - 200 - 0.0

0.00 98.66% 98.53% 70.86% 4.60% 98.80%
0.30 91.79% 92.17% 54.28% 21.76% 93.06%
0.60 86.79% 85.53% 60.09% 31.49% 85.87%
1.00 31.48% 0.00% 0.00% 0.00% 0.00%

Yeast - 200 - 0.1

0.00 98.44% 93.90% 71.90% 12.95% 94.39%
0.30 98.43% 94.12% 70.91% 13.18% 94.48%
0.60 94.26% 77.06% 43.08% 21.67% 77.55%
1.00 90.73% 0.00% 0.00% 0.00% 0.00%

Yeast - 200 - 0.5

0.00 98.05% 92.13% 77.29% 64.98% 92.97%
0.30 98.04% 92.18% 77.47% 65.20% 92.99%
0.60 97.07% 88.85% 74.10% 60.91% 89.63%
1.00 84.77% 0.00% 0.00% 0.00% 0.00%

Dream5 - Ecoli

0.0 97.24% 95.09% 77.43% 6.97% 95.45%
0.3 97.24% 95.19% 80.44% 9.39% 95.49%
0.6 97.25% 95.22% 81.10% 59.20% 95.51%
1.0 98.01% 97.10% 97.10% 97.10% 97.10%

Table 3 Percentage of edges removed by ARACNE and by the different versions of INLO-
CANDA from the original network reconstructed by GENERE.



36 Gianvito Pio et al.

6 Conclusions and Future Work

In this work, we proposed INLOCANDA, a machine learning method which is
able to learn an inductive predictive model for gene network reconstruction. INLO-
CANDA has two main characteristics: 1) it is able to analyze and exploit causality
phenomena in order to discard, in the reconstructed network, edges which can be
considered the result of indirect regulation activities; 2) it is able to take into
account possible community structures and possible similar roles by means of a
specific graph embedding strategy, which, according to the results, provides a sig-
nificant boost in terms of the quality of the reconstruction. Moreover, contrary to
existing methods for the identification of a transitive reduction of a network or
for the identification of redundancies in reconstructed biological networks, INLO-
CANDA simultaneously offers all the following features: i) it is able to analyze
directed weighted networks, fully exploiting the weights on the edges which rep-
resent their reliability; ii) it does not require any pre-processing step to handle
the possible presence of cycles; iii) it is able to identify indirect interactions of
arbitrary length and to exploit them to remove direct edges considered as false
positives. The estimation of the reliability of a path is guided by a function, which
can be tuned according to specific underlying phenomena and assumptions with
respect to the application domain in hand.

The obtained results show that INLOCANDA, especially in its variants based
on the averages, is able to obtain (statistically) better, more stable predictive
accuracy with respect to the considered competitors, even with highly noisy data
and even if the reconstructed networks contain a lower (or comparable) number
of edges with respect to direct competitors. Moreover, by means of an extensive
experimental evaluation, we proved that such advantages are present with multiple
supervised learners, provided that they are able to handle the high imbalance in the
dataset. All these aspects allow the expert to concentrate their in-vitro validation
activities on few promising gene interactions, possibly representing true causal
phenomena.

As future work, we plan to develop a distributed variant of the method within
the Apache Spark framework, able to work on large scale networks, and to adopt
it for the analysis of gene networks concerning Homo Sapiens. In this respect,
we also plan a biological evaluation of the results, guided by biologists. Finally,
focusing on the influence of f(·), we will evaluate the effectiveness of INLOCANDA
in the analysis of networks representing data in other domains, where different
assumptions on the network structure may hold.
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Appendix 1 - Results obtained by KNN classifier

Fig. 19 Box plots depicting the results obtained by KNN on Syntren E.coli datasets with
100 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 20 Box plots depicting the results obtained by KNN on Syntren E.coli datasets with
200 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 21 Box plots depicting the results obtained by KNN on Syntren Yeast datasets with 100
nodes, by varying the threshold on the weight of the original network edges.
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Fig. 22 Box plots depicting the results obtained by KNN on Syntren Yeast datasets with 200
nodes, by varying the threshold on the weight of the original network edges.
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Fig. 23 Box plots depicting the results obtained by KNN on DREAM5 E.coli dataset, by
varying the threshold on the weight of the original network edges.
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Appendix 2 - Results obtained by JCHAID classifier

Fig. 24 Box plots depicting the results obtained by JCHAID on Syntren E.coli datasets with
100 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 25 Box plots depicting the results obtained by JCHAID on Syntren E.coli datasets with
200 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 26 Box plots depicting the results obtained by JCHAID on Syntren Yeast datasets with
100 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 27 Box plots depicting the results obtained by JCHAID on Syntren Yeast datasets with
200 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 28 Box plots depicting the results obtained by JCHAID on DREAM5 E.coli dataset, by
varying the threshold on the weight of the original network edges.
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Appendix 3 - Results obtained by JRIP classifier

Fig. 29 Box plots depicting the results obtained by JRIP on Syntren E.coli datasets with
100 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 30 Box plots depicting the results obtained by JRIP on Syntren E.coli datasets with
200 nodes, by varying the threshold on the weight of the original network edges.
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Fig. 31 Box plots depicting the results obtained by JRIP on Syntren Yeast datasets with 100
nodes, by varying the threshold on the weight of the original network edges.



Exploiting causality in Gene Network Reconstruction based on graph embedding 53

Fig. 32 Box plots depicting the results obtained by JRIP on Syntren Yeast datasets with 200
nodes, by varying the threshold on the weight of the original network edges.
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Fig. 33 Box plots depicting the results obtained by JRIP on DREAM5 E.coli dataset, by
varying the threshold on the weight of the original network edges.


