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Abstract. Transfer learning can be employed to leverage knowledge
from a source domain in order to better solve tasks in a target domain,
where the available data is exiguous. While most of the previous pa-
pers work in the supervised setting, we study the more challenging case
of positive-unlabeled transfer learning, where few positive labeled in-
stances are available for both the source and the target domains. Specif-
ically, we focus on the link prediction task on network data, where we
consider known existing links as positive labeled data and all the possi-
ble remaining links as unlabeled data. In many real applications (e.g., in
bioinformatics), this usually leads to few positive labeled data and a huge
amount of unlabeled data. The transfer learning method proposed in this
paper exploits the unlabeled data and the knowledge of a source network
in order to improve the reconstruction of a target network. Experiments,
conducted in the biological field, showed the effectiveness of the proposed
approach with respect to the considered baselines, when exploiting the
Mus Musculus gene network (source) to improve the reconstruction of
the Homo Sapiens Sapiens gene network (target).

1 Introduction

The link prediction task aims at estimating the probability of the existence of
an interaction between two entities on the basis of the available set of known
interactions, which belong to the same data distribution, the same context and
described according to the same features. However, in many real cases, the iden-
tical data distribution assumption does not hold. For example, in the study of
biological networks, collecting training data is very expensive and it is necessary
to build link prediction models on the basis of data regarding different (even if
related) contexts. At this regard, transfer learning strategies can be adopted to
leverage knowledge from a source domain to improve the performance of a task
solved on a target domain, for which we have few labeled data (see Figure 1).

In the literature, we can find several applications where transfer learning
approaches have proved to be beneficial. For example, in the classification of Web
documents, where the goal is to assign a category to a certain Web document,
transfer learning approaches can be exploited to classify newly created Web



Fig. 1. Exploitation of the knowledge acquired on a source task to solve the target task
(right-side), compared to solving two machine learning tasks independently (left-side).

sites which follow a different data distribution [3] (e.g., the content is related
to new subtopics). Another example is the work proposed in [11], where the
authors exploit transfer learning approaches in a situation where data become
easily outdated. In particular, the authors aim to adapt a WiFi localization
model trained in one time period (source domain) to a new time period (target
domain), where the available data possibly follow a different data distribution.

Focusing on the link prediction task, in the literature we can find several
works in the biological field, since biological entities and their relationships can
be naturally represented as a network. In the specific field of genomics, recent
studies have significantly relied on high throughput technologies and on compu-
tational methods, which led to an improved understanding of the working mech-
anisms in several organisms. Such mechanisms are usually modeled through gene
interaction networks, where nodes represent genes and edges represent regula-
tion activities. The direct observation of the real structure of these interaction
networks would require expensive in-lab experiments. Since gene expression data
are easy to obtain, several methods have been proposed in the literature that
exploit this kind of data [9]. These approaches analyze the expression level of the
genes under different conditions (e.g., with a specific disease or after a treatment
with a specific drug) or, alternatively, under a single condition in different time
instants. Therefore, most machine learning approaches aiming to solve the link
prediction task generally analyze gene expression data. In this context, the goal
is to reconstruct the whole network structure (Gene Network Reconstruction -
GNR), providing the biologists with a general overview of the interactions among
the genes. However, while existing methods generally work effectively on suffi-
ciently large training data, a transfer learning approach could favor the GNR
of specific organisms which are not well studied, by exploiting the knowledge
acquired about different, related organisms.

The main contribution of this paper is to evaluate the possible benefits that
transfer learning techniques can provide to the task of link prediction. In par-
ticular, we exploit the available information about a source network for the
reconstruction of a target network with poor available data. Moreover, we study
the more challenging case of Positive-Unlabeled (PU) transfer learning, where
few positive labeled examples are available for both the source and the target



domains, and no negative example is available. PU learning setting holds in
many real context (e.g., text categorization [8], bioinformatics [5]) where it is
very expensive or unfeasible to obtain negative examples for the concept that
we intend to model. As described in [16], PU learning methods can be divided
into three classes: a) the first, called two-step strategy, tries to identify some
reliable negative examples in the unlabeled data, and then applies supervised
learning algorithms; b) the second assigns different weights to positive and unla-
beled examples, by estimating the conditional probability of an example of being
positive; c) the third just treats the unlabeled data as highly noisy negative data.

In this paper, we consider the link prediction task as a PU learning task
of class b), that, according to previous studies [2, 13], allows us to avoid the
strong assumptions about the negative examples made by methods relying on
classes a) and c). In particular, we propose a link prediction method which
aims at building a binary classifier for all the possible links, where each link
〈v′, v′′〉 between two nodes v′ and v′′ is represented as the concatenation of the
feature vectors of v′ and v′′. The training set is built by considering the set
of vectors associated to known (i.e., validated) links as positive examples and
the vectors associated to all the possible remaining links, excluding self-links, as
unlabeled examples. Methodologically, in a first stage we build a clustering model
for the source domain and a clustering model for the target domain. In both
cases, this is performed only on the positive labeled examples in order to catch
several different viewpoints of the underlying concept of positive interactions.
In a second stage, the unlabeled data of both source and target domains are
weighted according to the similarities with respect to the clusters’ centroids. In
a third stage, we exploit the positive examples and all the (weighted) unlabeled
examples, coming from both the source and the target domains, by training a
classifier which is able to handle weights on instances. According to [10][14], our
method belongs to the category of homogeneous transfer learning approaches,
where the source and target domains are described in the same feature space,
with possibly different data distributions. This setting is in contrast with the
heterogeneous transfer setting, which assumes different feature spaces.

In order to evaluate the performance of the proposed method, we performed
experiments in the biological domain. In particular, our experiments focused on
the reconstruction of the human (Homo Sapiens Sapiens) gene network guided by
the gene network of another, related organism, i.e., the mouse (Mus Musculus).

In Section 2, we describe in details our method, while in Section 3 we show the
experimental evaluation and report some comments about the results. Finally,
in Section 4, we draw some conclusions and outline possible future works.

2 The proposed method

In this section, we describe our transfer learning approach to solve link prediction
tasks in network data. Before describing it in details, we introduce some useful
notions and formally define the link prediction task for a single domain. Let:

– V be the set of nodes of the network;



– x = 〈v′, v′′〉 ∈ (V × V ) be a (possible) link between two nodes v′ and v′′,
where v′ 6= v′′;

– e(v) = [e1(v), e2(v), . . . , en(v)] be the vector of features related to the node
v, where ei(v) ∈ R, ∀i ∈ {1, 2, . . . , n};

– e(x) = [e1(v′), e2(v′), . . . , en(v′), e1(v′′), e2(v′′), . . . , en(v′′)] be the vector of
features related to the link x = 〈v′, v′′〉;

– sim(a, b) ∈ [0, 1] be a similarity function between the vectors a and b;
– l(x) a function that returns 1 if the link x is a known existing, and 0 if its

existence is unknown;
– L = {x | x ∈ (V × V ) ∧ l(x) = 1} be the set of labeled links;
– U = (V × V ) \ L be the set of unlabeled links;

– D = {X̃, P (X)} be the domain described by the feature space X̃ = R2n,
with a specific marginal data distribution P (X), where X = L ∪ U ;

– w(x) (0 ≤ w(x) ≤ 1) be a computed weight for the link x ∈ U ;
– f(x) be an ideal (target) function which returns 1 if x is an existing link,

and 0 otherwise.

The task we intend to solve is then defined as follows:
Given: a set of training examples {〈e(x), w(x)〉}x, each of which described by a
feature vector and a weight;
Find: a function f ′ : R2n → [0, 1] which takes as input a vector of features
e(x) and returns the probability that the link x exists. Therefore, f ′(e(x)) ≈
P(f(x) = 1) or, in other terms, f ′ approximates the probability distribution
over the values of the ideal function f .

Our method works with two different domains: the source domain Ds =
{X̃s, P (Xs)}, and the target domain Dt = {X̃t, P (Xt)}. We remind that our

method works with homogeneous feature spaces, that is X̃s = X̃t, while the
marginal data distributions is generally different, that is P (Xs) 6= P (Xt).

Given the two sets of labeled examples Ls and Lt, regarding the source and
the target domain respectively, the method consists of three stages, that are
summarized in Figure 2 and detailed in the following subsections.

Stage I - Clustering. The first stage of our method consists in the identifica-
tion of a clustering model for the positive examples of each domain (i.e., on Ls

and Lt). The application of a clustering method is motivated by the necessity
to distinguish among possible multiple viewpoints of the underlying concept of
positive interactions. Moreover, a summarization in terms of clusters’ centroids
becomes useful also from a computational viewpoint, since in the subsequent
stages we can compare centroids instead of single instances. In this paper, we
adopt the classical k-means algorithm, since it is well established in the litera-
ture. However, any other prototype-based clustering algorithm, possibly able to
catch specific peculiarities of the data at hand, could be plugged into our method.

Stage II - Instance Weighting. Although an unlabeled link could be either a
positive or a negative example, we consider all the unlabeled examples as positive
examples and compute a weight representing the degree of certainty in [0, 1] of
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Fig. 2. A graphical overview of the proposed transfer learning approach.

being a positive example: a value close to 0 means that the example is likely to be
a negative example, while a value close to 1 means that the example is likely to be
a positive example. The weight associated to the unlabeled instances of both the
source and the target domains are computed according to their similarities with
respect to the centroids obtained in the first stage. In particular, we identify
a different weighting function for the source and target domains, in order to
smooth the contribution provided by instances coming from the source domain.

Specifically, an unlabeled link x belonging to the target network (i.e., x ∈
Vt×Vt) is weighted according to its similarity with respect to the centroid of its
closest cluster, among the clusters identified from the target network. Formally:

w(x) = maxct∈Ct
(sim(e(x), ct)), (1)

where Ct are the clusters identified from positive examples of the target network.

On the other hand, an unlabeled link x′ belonging to the source network (i.e.,
x′ ∈ Vs × Vs) is weighted by considering two similarity values: i) the similarity
with respect to the centroid of its closest cluster, computed among the clusters
identified from the source network, and ii) the similarity between such a centroid
and the closest centroid identified on the target network. Formally, let c′ =
argmaxcs∈Cs

(sim(e(x′), cs)) be the closest centroid with respect to x′ among
the possible centroids Cs identified in the source network. Then:

w(x′) = sim(e(x′), c′) ·maxc′′∈Ct
(sim(c′′, c′)). (2)



Fig. 3. Example of unlabeled link weighting process.

As a similarity function, we exploit the Euclidean distance, after applying a min-
max normalization (in the range [0, 1]) to all the features of the feature vectors.

Formally, sim(e(x′), e(x′′)) = 1−
√∑n

k=1 (ek(x′)− ek(x′′))
2
.

An overview of the weighting strategy can be graphically observed in Figure 3.

Stage III - Training the classifier. In the third stage, we train a probabilis-
tic classifier, based on linear Weighted Support Vector Machines (WSVM) [15]
with Platt scaling [1], from the weighted unlabeled instances coming from both
the source and the target networks. We selected an SVM-based classifier mainly
because i) it has a (relatively) good computational efficiency, especially in the
prediction phase, and ii) it already proved to be effective (with Platt scaling)
in the semi-supervised setting [4]. At the end of the training phase, the WSVM
classifier produces a model in the form of an hyperplane function h. In the spe-
cific PU setting, while h is not class discriminatory, we can consider as positive
examples those appearing close to the identified hyperplane1. At this respect, by
exploiting the Platt scaling, for each unlabeled link x, we compute the proba-
bility of being a positive example as f ′(e(x)) = 1

1+e−h(e(x)) , where h(e(x)) is the
score obtained by the learned WSVM. Finally, we rank all the predicted links
in descending ordering with respect to the their probability of being positive. A
pseudo-code representation of the proposed method is shown in Algorithm 1.

1 The less the distance between an unlabeled example and the hyperplane, the higher
the probability of the existence of the link.



Algorithm 1: PU Link Prediction via Transfer Learning
Data:
·Ls = {xs | xs ∈ (Vs × Vs) ∧ l(xs) = 1}: positive links of the source network
·Us = (Vs × Vs) \ Ls: unlabeled links of the source network
·Lt = {xt | xt ∈ (Vt × Vt) ∧ l(xt) = 1}: positive links of the target network
·Ut = (Vt × Vt) \ Lt: unlabeled links of the target network
·e(x): feature vector of the link x

·sim(e(x′), e(x′′)) = 1−
√∑n

k=1 (ek(x′)− ek(x′′))
2

·k1, k2: number of positive clusters for the source and the target network, respectively

Result:
·ranked links: predicted links ordered according to their likelihood

1 begin
2 Cs ← kmeans(Ls, k1); Ct ← kmeans(Lt, k2);
3 source training set← ∅; target training set← ∅; ranked links← ∅;
4 foreach xt ∈ Ut do
5 w(xt)← max(ct∈Ct)

(sim(e(xt), ct));

6 target training set← target training set ∪ {〈e(xt), w(xt)〉};
7 foreach xs ∈ Us do
8 source centroid← argmax(cs∈Cs)(sim(e(xs), cs));

9 partial weight← sim(e(xs), source centroid);
10 centroid sim← max(ct∈Ct)

(sim(source centroid, ct));

11 w(xs)← partial weight · centroid sim;
12 source training set← source training set ∪ {〈e(xs), w(xs)〉};
13 training set← source training set ∪ target training set;
14 h(·)← WSVM(training set);

15 f ′(·) = 1

1+e−h(·) ;

16 foreach x ∈ Ut do
17 ranked links← ranked links ∪ {〈x, f ′(e(x))〉};
18 ranked links← sort by score(ranked links);
19 return ranked links;

3 Experiments

Our experiments have been performed in the biological field. In particular, the
specific task we intend to solve is the reconstruction of the human (Homo Sapiens
Sapiens - HSS ) gene network. As a source task, we will exploit the gene network
of another, related organism, i.e., the mouse (Mus Musculus - MM ).

3.1 Dataset

The considered dataset consists of gene expression data related to specific organs.
In particular, we analyzed the gene expression levels of 6 organs (lung, liver,
skin, brain, bone marrow, heart), obtained by the samples available at Gene
Expression Omnibus (GEO), a public functional genomics repository. On overall,
161 and 174 samples were considered respectively for MM and HSS.

All the samples of each organism were processed according to the data acqui-
sition workflow adopted for the DREAM5 challenge [9]. In particular, we pro-
cessed the samples through the Affymetrix Expression Console Software, which
led to produce a dataset consisting of a total of 45, 101 genes over the 161 samples
for MM and a dataset of 54, 675 genes over the 174 samples for HSS.



Although we originally had a different number of features for the considered
organisms, we built two homogeneous datasets by aggregating the features ac-
cording to the organs. In particular, for each organisms, we represented their
genes by means of 6 features (one for each organ), by averaging the expression
levels measured within the same organ. Accordingly, the datasets representing
the interactions among genes were built by considering all the possible pairs of
genes, i.e., by concatenating the feature vectors associated to the genes, leading
to 12-dimensional feature vectors. The set of validated gene interactions was
extracted from BioGRID2, which is an interaction repository containing data
compiled through comprehensive curation efforts. This set represents our ground
truth in terms of positive links. As for the unlabeled instances, we performed a
random sampling without replacement from all the other possible links involving
at least one gene that appears in the BioGRID ground truth. This procedure led
us to build a balanced dataset between positive and unlabeled examples.

3.2 Experimental Setting

Since our method exploits the k-means clustering algorithm, we performed the
experiments with different values for k1 (i.e., the number of clusters for the MM
organism) and k2 (i.e., the number of clusters for the HSS organism), in order
to evaluate the possible effect of such parameters on the results. In particular,
we considered the following parameter values: k1 ∈ {2, 3}, k2 ∈ {2, 3}.

We remind that we work in the PU learning setting (i.e., the dataset does
not contain any negative example). Therefore, inspired by the experiments per-
formed in [12], we evaluated the results in terms of recall@k. The adoption of
this measure allows us to avoid the estimation of possible negative examples
in the ground truth, which could lead to a wrong evaluation of the results. In
particular, in order to quantitatively compare the obtained results, we draw the
recall@k curve, by varying the value of k, and compute the area under the curve.

The experiments have been performed according to the 10 fold cross valida-
tion (10 fold CV) on the positive labeled data. In particular, for each iteration
of the 10 fold CV, we considered: a) a portion of the positive labeled data (9 out
of 10 folds) to build the clustering models through k-means; b) all the unlabeled
data and a portion of positive labeled data (1 out of 10 folds) as test set.
We compared our method, indicated as transfer, with approaches:
- no transfer, which corresponds the WSVM with Platt scaling learned only
from the target network (i.e., from the HSS network). This baseline allows us to
evaluate the contribution of the source domain.
- union, which is the WSVM with Platt scaling learned from a single dataset
consisting of the union of the instances coming from both MM and HSS. This
baseline allows us to evaluate the effect of our weighing strategy.
Since we are interested in observing the contribution provided by our approach
with respect to the non-transfer approach, results will be evaluated in terms of
improvement with respect to the no transfer baseline.

2 https://thebiogrid.org



Fig. 4. Improvement over no transfer, with different values of k1 and k2.

3.3 Results

In Figure 4, we show the results obtained with different values of k1 and k2. In
particular, we considered different percentages of the recall@k curve and mea-
sured the area under each sub-curve. This evaluation is motivated by the fact
that biologists usually focus their in-lab studies on the analysis of the top-ranked
predicted interactions. Therefore, a better result in the first part of the recall@k
curve (i.e., at 1%, 2%) appears to be more relevant for the real biological appli-
cation. The graphs show that both the union baseline and the proposed method
(transfer) are able to obtain a better result with respect to the variant with-
out any transfer of knowledge (no transfer). This confirms that, in this case,
the external source of knowledge (the MM gene network) can be exploited to
improve the reconstruction of the target network (the HSS gene network).

By comparing the union baseline with our method, we can observe that
the proposed weighting strategy was effective in assigning the right contribution
to each unlabeled instance (coming either from the source or from the target
network) in the learning phase. This is even more evident in the first part of the
recall@k curve, where our method was able to retrieve about 120 additional true
interactions at the top 1% of the ranking with respect to the baseline approaches.

Finally, by analyzing the results with respect to the values of k1 and k2,
we can conclude that the highest improvement over the baseline approaches
has been obtained with k1 = 2 and k2 = 2. This means that clustering can
affect the results, and that even higher improvements could be obtained by
adopting smarter clustering strategies that can, for example, catch and exploit
the distribution, in terms of density, of the examples in the feature space.

4 Conclusion and Future Work

In this paper, we proposed a transfer learning method to solve the link prediction
task in the PU learning setting. By resorting to a clustering-based strategy, our



method is able to exploit unlabeled data as well as labeled and unlabeled data
of a different, related domain, identifying a different weight for each training
instance. Focusing on biological networks, we evaluated the performance of the
proposed method in the reconstruction of the Human gene network, supported
by the knowledge about the mouse gene network. Results show that the proposed
method was able to improve the accuracy of the reconstruction, if compared to
two baseline approaches. As future work, we plan to implement a distributed
version of the proposed method, and to adopt some ensemble-based approaches
[6, 7] to exploit multiple clusters in the prediction. We also plan to perform an
extensive comparison with state-of-the-art methods in the biological field.
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