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Abstract

Heterogeneous information networks consist of different types of objects and links. They can be
found in several social, economic and scientific fields, ranging from the Internet to social sci-
ences, including biology, epidemiology, geography, finance and many others. In the literature,
several clustering and classification algorithms have been proposed which work on network data,
but they are usually tailored for homogeneous networks, they make strong assumptions on the
network structure (e.g. bi-typed networks or star-structured networks), or they assume that data
are independently and identically distributed (i.i.d.). However, in real-world networks, objects
can be of multiple types and several kinds of relationship can be identified among them. More-
over, objects and links in the network can be organized in an arbitrary structure where connected
objects share some characteristics. This violates the i.i.d. assumption and possibly introduces
autocorrelation. To overcome the limitations of existing works, in this paper we propose the
algorithm HENPC, which is able to work on heterogeneous networks with an arbitrary structure.
In particular, it extracts possibly overlapping and hierarchically-organized heterogeneous clus-
ters and exploits them for predictive purposes. The different levels of the hierarchy which are
discovered in the clustering step give us the opportunity to choose either more globally-based
or more locally-based predictions, as well as to take into account autocorrelation phenomena
at different levels of granularity. Experiments on real data show that HENPC is able to signif-
icantly outperform competitor approaches, both in terms of clustering quality and in terms of
classification accuracy.
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1. Introduction

Many objects and data in the real world can be considered interconnected (i.e., through re-
lationships, interactions, etc.), forming complex information networks. Information networks
can be found in several social, economic and scientific fields, ranging from the Internet to social
sciences, including biology, epidemiology, geography, finance and many others. Current studies
about mining networked data mainly focus on homogeneous information networks [31, 28, 41],
i.e., networks composed of a single type of object and a single type of link. However, in real
life scenarios, there could be multiple types of object, connected to each other through different
kinds of link, forming heterogeneous information networks. Examples can be found in biology,
where genes, proteins, organisms, etc. are associated to each other through different types of
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link. Another example is in the analysis of bibliographic data, where different types of link exist
among authors, conferences, journals and papers.

These considerations motivate the recent interest in mining heterogeneous information net-
works, which in most cases focus on the clustering task. Typically, (multi-type) clustering is
based on both the attribute values of the objects (possibly of different types) and the links among
them (e.g., spectral clustering [26], LinkClus [49] and CrossClus [50]). Clustering has been also
exploited as a preliminary phase for other data mining tasks, such as link prediction [3] and se-
mantic tagging [46], as well as for the construction of higher-level features or multiple views of
the data [8]. Further interesting examples can be found in studies that proposed ranking-based
clustering approaches (e.g., RankClus [44] and NetClus [45]), that generate efficiently results
for both ranking and clustering. Some other methods perform classification [18, 19]. They take
advantage of links in heterogeneous information networks to propagate knowledge across the
nodes, enforcing the similarity between similar objects, if linked. Approaches that work in this
direction are based on label propagation [51] and collective classification [39].

One of the main problems that these approaches tackle when learning predictive models from
network data (regardless of the type of network, that is, homogeneous or heterogeneous) is that
data are affected by some form of autocorrelation [1, 41]. This means that the value of an at-
tribute at a given node depends on the values of the same attribute of the nodes it is connected
with. This phenomenon is a direct violation of the assumption that data are independently and
identically distributed, which is at the basis of most data mining methods. At the same time, auto-
correlation also offers a unique opportunity to improve the performance of predictive models on
network data, since inferences about one object can be used to improve inferences about related
objects. Autocorrelation can be recognized in several fields, for instance, in spatial data analysis
it can be recognized in the (Tobler’s) first law of geography: “Everything is related to everything
else, but near things are more related than distant things”. In social analysis, autocorrelation
can be recognized in the homophily principle [29], which shows that people connected through
friendship relationships tend to share many sociodemographic, behavioral, and intra-personal
characteristics. This is also important in marketing [9].

In this paper, we propose a method which is able to perform both clustering and classification
tasks on heterogeneous networks. In particular, it is able to group together heterogeneous objects
in a network and to assign labels to unlabeled objects, implicitly taking into account autocorre-
lation in a collective learning setting. Similarly to multi-type clustering, where cluster labels are
associated to objects of multiple types in an unsupervised fashion, in our work we simultane-
ously cluster and classify objects of different types. Classification can be performed according
to different classification schemes i.e. it can be single-label, multi-label, hierarchical, hierar-
chical multi-label (HMC), etc. In this work we focus attention on the single-label setting and
we call the considered learning task multi-type clustering and classification from heterogeneous
networks. This task is not completely new in the literature and has connections with the task
of multiple predicate learning [36] in ILP. The difference is that it is applied to heterogeneous
networks and not to logic clauses. Connections can also be found with the task of multi-label
collective classification [23, 38], where, however, objects to be classified are of the same type.

In this work, we consider the within-network setting [11]: objects for which the class is known
are linked to objects for which the class must be estimated [28]. This setting is semi-supervised
and differs from the across-network setting, where learning is performed from one (labeled)
network and prediction is performed on a separate, presumably similar network [27, 41].

In order to simultaneously consider the clustering and the classification tasks, the solution
we propose is based on predictive clustering [5], which combines elements from both tasks and
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Figure 1: Multi-type classification from heterogeneous networks. Shapes indicate types of object, while colors indicate
class labels. White objects are unclassified objects. Ellipses represent possible clusters.

allows us to properly take into account the autocorrelation phenomenon: Clusters of similar
objects are identified, and a cluster description and a predictive model are associated to each
cluster. Unlabeled objects are assigned to clusters on the basis of the cluster descriptions and the
corresponding predictive models are considered to provide predictions for the target property.
The basic idea is to build (possibly overlapping) clusters of heterogeneous nodes of the network,
such that autocorrelation can be implicitly considered when learning the classifier. This means
that the clustering algorithm should preserve the network structure, that is, linked objects should
have similar cluster membership [43]. In other words, highly connected objects should fall in the
same clusters, contributing to learning the same predictive models. When exploiting multi-type
clustering for (multi-type) classification, we use the intuition that class values of objects of type
A are in some way related to class values of objects of type B, when all these objects belong to
the same heterogeneous cluster (or sub-network). See Figure 1 for an example.

The way the clusters are generated implicitly influences prediction. In fact, a hierarchical or-
ganization of clusters, which is learned in this work, facilitates, from the descriptive perspective,
the understanding of the results by human experts. From the predictive perspective, this orga-
nization results in the possibility of choosing either more globally-based or more locally-based
predictions. This is because each cluster can naturally consider different effects of the autocorre-
lation phenomena on different portions of the network: at higher levels of the hierarchy, clusters
will be able to consider autocorrelation phenomena that are spread all over the network, while at
lower levels of the hierarchy, clusters will consider the local effects of autocorrelation.

Another characteristic that can influence the prediction is the extraction of overlapping clus-
ters. Indeed, overlapping clusters give the opportunity to base predictions on more than one
heterogeneous sub-network. For this reason, we extract hierarchically organized and possibly
overlapping heterogeneous clusters.

Since clusters are used for predictive purposes, a clustering algorithm which takes as input the
number K of clusters would affect the predictive capabilities of the learned models. In particular,
setting K equal to the number of classes would lead to identifying models which are too general
and are not able to represent the underlying distribution of the data properly. On the contrary,
overestimating the value of K could lead to overfitting problems. Therefore, our clustering algo-
rithm does not require K as input and automatically identifies (at distinct levels of the hierarchy)
the optimal number of clusters, on the basis of the data distribution.
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The paper, which provides full details about the method and its evaluation, is organized as fol-
lows. In the next section, related work is discussed. The method is presented in Section 3, where
we formally introduce the problem and describe in detail the proposed predictive clustering-
based solution. The experimental results, for several real datasets, are presented in Section 4.
Section 5 concludes the paper.

2. Related Work

The motivations for this work come from research reported in the literature in mining heteroge-
neous network data for both clustering and predictive purposes. In the following subsections, we
discuss related work from both research fields, also considering previously proposed predictive
clustering methods.

2.1. Clustering heterogeneous network data

The problem of clustering objects in heterogeneous networks has received increasing atten-
tion in the last years. One of the first attempts in this direction is presented in [47], where the
authors propose improving the cluster quality of interrelated data objects through an iterative re-
inforcement clustering process. This process aims at iteratively partitioning objects of each type
into a given number of clusters. At each iteration, the similarity between two objects a and b
of the same type is the linear combination of i) the attribute similarity between a and b, ii) their
intra-type similarity (between the adjacency vectors of a and b, representing links with objects
of the same type) and iii) their inter-type similarity (between the adjacency vectors of a and b,
representing links with objects of different types). Contrary to our task, extracted clusters are not
heterogeneous, ignoring the possibility to preserve links among objects of different types.

The authors of [7] propose applying a clustering algorithm in a data warehousing framework.
In this case, there are objects of a “central” type (stored in the fact table), which are connected to
objects of other types (stored in dimensional tables), forming a star structure. The goal is to build
a hierarchy of clusters for each dimensional table, by taking into account both the objects to be
clustered and the objects of the central type. These hierarchies are then used for roll-up and drill-
down OLAP operations. Since clusters are identified for each dimensional table independently,
as in [47], they are not heterogeneous.

The idea of performing clustering of heterogeneous objects organized in a star structure is also
considered in [44], where the authors propose RankClus, a probabilistic approach to multi-type
clustering. The algorithm assumes that, within each cluster, objects from the central type are
generated by a ranking-based probabilistic generative model. The algorithm aims at identifying
such models and at exploiting them, in order to compute the posterior probability that each object
belongs to each cluster. A limitation of this algorithm is that, although it is possible to extend its
application to arbitrary multi-typed star-structured networks, it is tailored for (and experiments
are limited to) bi-typed networks. Moreover, the extracted clusters only contain one type of
object (i.e., they are homogeneous).

Bi-typed networks are also the main focus of the work presented in [33, 34], where the authors
propose the co-clustering method HOCCLUS2 for the analysis of microRNA-gene interaction
networks. The main advantages of HOCCLUS2, with respect to the system proposed in [44], are
the possibility to group heterogenous objects in the same cluster (thus, preserving links among
objects of different types) and the identification of a hierarchy of (possibly overlapping) clusters,
which allows an analysis at different levels of granularity. Although similar to the work presented

4



in this paper, HOCCLUS2 is not able to analyze more than two types of objects; it cannot exploit
information conveyed by attributes of objects, and it is not exploited for prediction purposes.

Another work that extracts heterogeneous clusters which preserve links among objects of
different types is presented in [13], where the authors propose extending co-clustering to star-
structured networks. The method models the problem as the fusion of pair-wise co-clustering
sub-problems. However, the star structure limits the types of link that can be considered to those
involving one object of the central type. Thus, links among objects not belonging to the central
type and links among objects of the same type are not considered and preserved.

In a more recent work [45], the authors present the algorithm NetClus, which takes advantage
of the same ranking-based models exploited by RankClus. The main differences are that NetClus
can be directly applied to star-structured networks with an arbitrary number of types and that it
is able to extract heterogeneous clusters. As in [13], this algorithm suffers from the problem that
only links involving one object of the central type can be considered.

The task of multi-view clustering on star-structured data [16] also performs clustering from
heterogeneous objects. However, this task aims at performing co-clustering on objects of the cen-
tral type and on features by exploiting multiple (possibly independent) views of the star schema
(á la co-training).

One of the first approaches where the single central type is not imposed is proposed in [26],
although experiments are limited to datasets with such a structure. In this case, the proposed
solution is based on spectral clustering and resorts to the relational data mining framework, since
it views the network as a relational database. The authors call the task they solve collective
clustering on multi-type relational data, which has several connections with our clustering task.
An important difference is that, as in [47], clusters are not heterogeneous. In general, the task of
clustering in relational data mining [25, 30, 20] has some connections with our work because, as
stated previously, one can view a relational database as a heterogeneous network. However, these
algorithms cluster objects of a single table (“target” table) of the processed database, also on the
basis of the objects belonging to the other tables (“non-target” tables). This not only means that
extracted clusters are not heterogeneous, but also that only objects of a single type are clustered.

More recently, in [43] the authors propose a method which, similarly to ours, extracts hetero-
geneous clusters from heterogeneous information networks. The clustering model is probabilistic
and is based on the learned strengths of different types of link. Clusters are obtained by an itera-
tive approach, in which the strengths of the links and the quality of the clustering result mutually
enhance each other. As in our approach, clusters are overlapped. However, differently from
ours, this algorithm takes as input the number of clusters and does not generate hierarchically
organized clusters. The implications of these differences have been explained in Section 1.

2.2. Network data classification

In the literature, several approaches have been designed to model a partially labeled network
and to provide accurate estimates of labels for unlabeled nodes. These approaches have been
studied in the research fields of collective inference [28, 12, 39, 17], active inference [4], semi-
supervised and transductive inference [52, 37, 2].

All these approaches, however, are designed to work with homogeneous networks. Only re-
cently, some works started to consider the heterogeneity of nodes and links in the networks.
For instance, in [14] the authors work on documents represented as a heterogeneous network
consisting of interlinked multimedia objects (containing titles, descriptions and subtitles) and
transform such a network into bag-of-words vectors (propositionalization). However, like most
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methods based only on propositionalization, it can possibly lose relevant relationships, due to the
necessity to apply aggregation functions to attributes associated to sets of linked objects. On the
contrary, in [19] the authors work directly on the heterogeneous network and consider a trans-
ductive classification task. In particular, they propose a graph-based regularization framework,
called GNetMine, which models the link structure in arbitrary information networks. GNetMine
considers each relation graph associated to each type of link separately and aims at preserving its
consistency. However, GNetMine considers only links among objects (i.e., it is not able to take
into account possible attributes associated to nodes), and class labels are associated to heteroge-
neous sub-networks. This means that the set of the possible class values is common among all the
objects, independently of their types. Although such a characteristic may appear reasonable in
many domains, it cannot model those (more general) situations in which different classification
schemes should be defined for each type of object.

The method proposed in [18] combines ranking and classification tasks on the basis of the
intuition that highly-ranked objects within a class should play more important roles in classi-
fication or, vice versa, that class membership information is important for determining a good
ranking over a dataset. Accordingly, a ranking-based iterative classification framework, called
RankClass, is proposed. At each iteration, a graph-based ranking model is built and, on the basis
of the current ranking results, the graph structure is adjusted, so that weights of the links in the
subnetwork corresponding to each specific class are strengthened, while weights of the links in
the rest of the network are weakened. Although experiments show the advantages of combining
ranking and classification, as in [19], a single classification scheme can be associated to all the
types of object. Moreover, in RankClass, each node is associated to one class, meaning that it is
mandatory to associate a classification scheme to each object type.

Recently, in [22] the authors proposed a collective classification approach which aims at clas-
sifying objects of the same type in a heterogeneous network, based on the concept of meta-path.
A meta-path is a path, between two objects to be classified, consisting of a sequence of link
types. This concept is used to effectively assign labels to a group of interconnected instances, by
taking into account different meta-path-based dependencies. The classification is probabilistic
and is based on the feature values of the object to be classified, on the meta-paths, on the “re-
lational features” associated to the meta-paths, as well as on the labels associated to the objects
traversed in the meta-paths. In this way, the proposed model is able to capture the subtlety of
different dependencies among instances, with respect to different meta-paths and, at the same
time, to implicitly take autocorrelation into account. Although similar to ours, this approach is
specifically designed to classify objects of a single type, similarly to the classical classification
problem in relational data mining. In the latter context, many approaches have been proposed in
the literature, which can be considered relevant baselines for the multi-type classification task.
For example, in [6] the authors propose exploiting the naı̈ve Bayes classification method in the
multi-relational setting. This system exploits: i) first-order classification rules for the compu-
tation of the posterior probability for each class; ii) both discrete and continuous attributes by
applying a supervised discretization method; iii) knowledge on the data model (i.e., the database
schema) during the generation of classification rules. More recently, the work in [48] introduced
the tool RelWEKA, which extends the WEKA toolkit with the multi-relational version of many
classical data mining algorithms (e.g., k-NN and SVM).

The adaptation of these approaches to the multi-type classification task consists in the gener-
ation of several separate classification models, without exploiting possible dependencies among
class values of objects of different types.
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2.3. Predictive clustering for network prediction

Some recent works propose the use of predictive clustering in the context of network data.
However, none of them consider the heterogeneity of the network.

In [40] the authors follow an approach similar to predictive clustering. In particular, they
combine a descriptive task (clustering) with a predictive task (regression) and argue that using
networks as a data representation provides a unified framework for identifying and characterizing
patterns in climate data. In that case, the network is built a-posteriori on the basis of the values of
Pearson’s correlation coefficient, computed between pairs of nodes on the time series collected
for the same variable. Clustering then boils down to a community detection problem that allows
the proposed approach to group interconnected nodes, so that the pairwise walking distance
between two nodes in the cluster is minimized. Finally, the prediction of the value of each node
is obtained by means of a linear regression model built on the (spatial) cluster it belongs to.
The innovative aspects of our proposal with respect to this work are twofold. First, extracted
clusters are overlapping and hierarchically organized. Second, the correlation is measured on
nodes which are interconnected in an existing network, while the method in [40] measures the
correlation to define virtual edges between examples.

In [41] the authors propose learning network predictive clustering trees, in order to classify
nodes in a network. Similarly to classical decision trees, network predictive clustering trees are
built top-down. The difference is that the authors propose using a network autocorrelation-based
measure as a heuristic, thus explicitly taking autocorrelation into account. The same principle is
adopted in [42], where network predictive clustering trees are used to predict gene functions. The
difference is that, in this last work, a hierarchical multi-label classification scheme is considered.

3. Multi-type Clustering and Classification from Heterogeneous Networks

In this section, we first introduce notations, definitions and concepts for both clustering and
classification tasks in heterogeneous information networks. Subsequently, we present our solu-
tion for the identification of the strength of the relationships among nodes of target types, and
our method to identify clusters and organize them hierarchically. Finally, we present the classifi-
cation step. The first definition we introduce is of the heterogeneous information network:

Definition 1 (Heterogeneous information network). A heterogeneous information network is
an information network where objects and links can be of different types. It is represented as an
undirected graph G = (V, E), where V is the set of nodes (i.e., objects) and E is the set of edges
(i.e., links) between objects. Moreover:

• each node v′ ∈ V is associated to a single node type tv(v′) ∈ T , where T is the finite set
{Tp}p of all the possible types of node in the network;

• each node type Tp defines a subset of nodes Vp ⊆ V;

• each node type Tp defines a set of attributes Xp = {Xp,1, . . . , Xp,mp } that are associated with
the nodes of that type;

• each edge between two nodes v′ and v′′ is associated with an edge type R j ∈ R, where R
is the finite set {R j} j of all the edge types in the network. Formally, we define an edge as
e = 〈R j, 〈v′, v′′〉〉 ∈ E, where R j = te(e) ∈ R is its type;
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• each edge type R j defines a subset of edges E j ⊆ (Vp × Vq), where Tp ≤ Tq
1;

• the set of node types T is partitioned into Tt (target types), which are considered as the
target of the clustering/classification task, and Ttr (task-relevant types), consisting of the
types that are not the main subject of the analysis. Only nodes belonging to a type of Tt are
actually clustered and possibly classified, on the basis of the edges involving nodes of any
type in T .

Definition 2 (Heterogeneous cluster). Given a heterogeneous network G = (V, E), we define a
heterogeneous (or multi-type) cluster as G′ = (V ′, E′), where:

• V ′ ⊆ V;

• ∀v′ ∈ V ′, tv(v′) ∈ Tt, that is, nodes in the clusters only belong to target types;

• E′ ⊆ (E ∪ Ê) is a set of edges among the nodes in V ′, belonging either to the set of edges E
or to a set of extracted edges Ê, that are edges identified by the clustering method (details
about these edges will be discussed in Section 3.1).

Definition 3 (Hierarchical organization of clusters). A hierarchy of heterogeneous clusters is
defined as a list of hierarchy levels [L1, L2, . . . , Lk], each consisting of a set of heterogeneous and
overlapping clusters. For each level Li, i = 2, 3, .. . . . k, we have that ∀ G′ ∈ Li ∃ G′′ ∈ Li−1, such
that G′′ is a subgraph of G′.

Definition 4 (Classification schemes in heterogeneous networks). Given a heterogeneous
network G = (V, E), each target type Tp ∈ Tt can be associated to a different classification
scheme S p ∈ S, where S is the set of classification schemes. More formally, we define a partial
mapping function φ : Tt → S which maps each node type Tp to the classification scheme S p. As
stated before, in this work we focus on single-label schemes. The mapping function φ is partial
in the sense that some target types may have no classification scheme. In other words, nodes
belonging to some types could be considered as the target only for the clustering task, but not
for classification purposes. In this respect, we define the set of types T ∗t ⊆ Tt as the set of target
types which also have an associated classification scheme. Therefore, each target type in T ∗t
will have a single target attribute, whose value will be predicted for unlabeled nodes.

On the basis of these definitions (see Appendix for a compact view of the symbols), we define
the learning task we consider in this work.

Definition 5 (Predictive hierarchical clustering for multi-type classification). Given a het-
erogeneous network G = (V, E), the set of target types Tt and the partial mapping function
φ : Tt → S, the goal is to find:

• A hierarchy of heterogeneous clusters [L1, L2, . . . , Lk].

• A classification function ψ(i)
p : Vp → Yp for each level Li and for each target type Tp ∈ T

∗
t .

Yp is defined according to the classification scheme S p = φ(Tp).

1Since we consider an undirected graph representation, we define an ordering among the node types. In this way, each
edge type R j defines a subset of links E j which associate pairs of nodes belonging to node types Tp and Tq, where Tq
follows Tp according to a total ordering. This guarantees that the edge 〈v′, v′′〉 does not appear also in the form 〈v′′, v′〉.
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The different classification functions identified for different levels of the hierarchy are exploited to
perform either globally-based or locally-based predictions, taking into account autocorrelation
phenomena on different portions of the network.

The method we propose for the task in Definition 5 is based on four steps:
1. Identification of the strength of the relationship among nodes;
2. Extraction of a set of (possibly overlapping) multi-type clusters in the form of multi-type

cliques (see Section 3.2), which are not hierarchically organized;
3. An iterative process in which pairs of multi-type clusters are merged when some heuristic

criteria are satisfied. At each iteration, several pairs of clusters can be merged. The process
stops when no changes are produced in the last iteration, otherwise an additional level of
the hierarchy is added.

4. Identification of a classification function for each hierarchical level and for each target type
with an associated classification scheme. Each function associates each node of a given
target type to a value in the range defined by the classification scheme associated to such a
target type.

For the sake of simplicity, hereafter we will use the terms clique and cluster to refer to multi-type
clique and multi-type cluster, respectively.

3.1. Computing the strength of the relationship among nodes of different types
In this subsection we clarify how we compute the strength of the relationship among the nodes.

In order to explain this concept, we first provide the definition of tuples of nodes, which is used
to represent the output of this phase.

Definition 6 (Tuple of nodes). A tuple is defined as ~vi ∈ Tp1×Tp2×. . .×Tpr , where ∀ j = 1, . . . , r:
Tp j ∈ Tt and Tt − {Tp1 ,Tp2 , . . .Tpr } = ∅. In other words, the structure of a tuple is represented
by all the target types, taken at least once (i.e., r ≥ |Tt |)2.

Given the structure of the tuple, for each possible tuple ~vi, it is possible to compute the score
si which represents the strength of the relationship among all the nodes in the tuple. The way
we identify this value takes into account the possible meta-paths3 in the network that pairwise
connect all the nodes in the tuple, i.e.: si = min

j′, j′′
score(vi, j′ , vi, j′′ ), where vi, j is the j-th node of the

tuple ~vi. If there is no meta-path connecting two nodes in the tuple, si = 0. The rationale behind
the use of the minimum is that the connection among the nodes in the tuple is strong if all the
pairwise connections are strong (see Figure 2).

Accordingly, we define the set of extracted edges Ê, which consists of the edges for each pair
of nodes vi, j′ ,vi, j′′ not belonging to E for which score(vi, j′ , vi, j′′ ) > 0. Each edge between two
nodes vi, j′ and vi, j′′ is associated to the maximum score computed according to the meta-paths
connecting them in the network:

score(vi, j′ , vi, j′′ ) = max
P∈metapaths(T j′ ,T j′′ )

pathscore(P, vi, j′ , vi, j′′ ), (1)

2It is noteworthy that, although we do not impose any limit on the value of r, it will be a predefined (very low) value,
defined according to the set of target types considered for the clustering and classification tasks. Therefore, the number
of possible tuples is always finite.

3In this paper, the term meta-path represents a concept similar to the meta-path in [22], where it represents a sequence
of link types. The difference is that, in our paper, a meta-path represents the set of sequences of nodes which follow the
same sequence of link types. Accordingly, the length of a meta-path is the number of link types in the sequence.
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Figure 2: Strength of the relationships for the tuple ~vi = 〈A, B,C〉.

Figure 3: An example of analysis of the sequences associated to the nodes vi, j′ (with id = t103) and vi, j′′ (with id = t209).
In the example, sequences 4, 5 and 6 (in yellow) are associated to vi, j′ , and sequences 3 and 7 (in green) are associated
to the node vi, j′′ . The algorithm pair-wisely compares the two sets of sequences (sequences in yellow and sequences in
green) and computes the similarity between vi, j′ and vi, j′′ as the maximum similarity between two sequences.

where:

• metapaths(T j′ ,T j′′ ) is the finite set {P1, P2, . . . , Pc} of all the possible meta-paths between
the nodes of type tv(vi, j′ ) = T j′ and the nodes of type tv(vi, j′′ ) = T j′′ . We consider the c
shortest meta-paths;

• each meta-path P is represented as a finite set of sequences of nodes {seqd =

〈v(d)
1 , v(d)

2 , . . . , v(d)
z 〉}, such that: i) the i-th node of each sequence in the meta-path P is of

the same type; ii) the first and the last nodes are of type T j′ and T j′′ , respectively and iii)
two consecutive nodes in a sequence are connected in E;

• pathscore(P, vi, j′ , vi, j′′ ) represents the strength of the connection between vi, j′ and vi, j′′ in P.

If there is a sequence in P that connects vi, j′ and vi, j′′ , pathscore(P, vi, j′ , vi, j′′ ) = 1. Otherwise,
it is computed as the maximum similarity between the sequences which start with vi, j′ and the
sequences which end with vi, j′′ (see Figure 3). Formally:

pathscore(P, vi, j′ , vi, j′′ ) = max
seqd′ ,seqd′′∈P;

v(d′)
1 =vi, j′ ; v(d′′ )

z =vi, j′′

S S (seqd′ , seqd′′ ) (2)
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In this formula, the similarity between two sequences (S S (·, ·)) is computed as the average be-
tween the similarity of target attribute values and the similarity of non-target attribute values of
the nodes in the two sequences, that is:

S S (seqd′ , seqd′′ ) =
1
2
·


∑

x∈XC (seqd′ ,seqd′′ )

sx(seqd′ , seqd′′ )

|XC(seqd′ , seqd′′ )|
+

∑
x∈XNC (seqd′ ,seqd′′ )

sx(seqd′ , seqd′′ )

|XNC(seqd′ , seqd′′ )|

 , (3)

where:

• XC(seqd′ , seqd′′ ) is the set of target attributes;

• XNC(seqd′ , seqd′′ ) is the set of non-target attributes;

• sx(seqd′ , seqd′′ ) is the similarity between valx(seqd′ ), that is the value of the attribute x in
the sequence seqd′ , and valx(seqd′ ), that is the value of the attribute x in the sequence seqd′′ .

Following [15], sx(seqd′ , seqd′′ ) is computed as follows:

• if x is numeric, then sx(seqd′ , seqd′′ ) = 1 − |valx(seqd′ )−valx(seqd′′ )|
maxx−minx

, where minx (resp. maxx) is
the minimum (resp. maximum) value, for the attribute x;

• if x is not a numeric attribute, then sx(seqd′ , seqd′′ ) = 1 if valx(seqd′ ) = valx(seqd′′ ), 0
otherwise.

If at least one value is not available (i.e., is null), the attribute is ignored. Moreover, the same
attribute can be considered more than once in the sequences. This can happen because nodes of
the same type can be considered in the same sequence, taking into account the possible presence
of network autocorrelation.

Finally, some node types may not be involved in any meta-path. In order to exploit the infor-
mation conveyed by these nodes, we add an aggregation of their attribute values to the nodes that
are connected to them and that appear in at least one meta-path (see Figure 4).

Such an aggregation considers values coming from directly or indirectly (up to a predefined
depth of analysis) connected nodes. For this purpose different aggregation functions could be
used. In our case, we use the arithmetic mean for numeric attributes and the mode for attributes
of any other type.

Figure 4: An example of the aggregation of nodes that are not involved in any meta-path. In the example T1 and T2 are
target nodes. Since node a cannot be involved in any sequence of a meta-path, the aggregation phase builds a new node
e new, which aggregates in e new information coming from a.
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Algorithm 1 Identification of the first hierarchical level L1.
Require: List of initial clusters L1 built from {~vi |si ≥ β}; the ordering relation <c.
Ensure: The updated list of clusters L1 (first level) in the form of cliques.

cliques← [ ];
repeat

sort L1 according to <c;
mergedClusters← [ ];
for i = 1 to |L1 | − 1 do

merged ← f alse;
{Search for a merging leading to a clique}
for j = i + 1 to |L1 | do

if merge(L1[i], L1[ j]) is a clique then
add merge(L1[i], L1[ j]) to mergedClusters;
remove L1[ j] from L1; merged ← true;

end if
end for
{If L1[i] cannot be merged, add it to the result}
if merged = f alse then

add L1[i] to cliques;
end if

end for
L1 ← mergedClusters;

until mergedClusters = [ ]
return cliques

3.2. Building multi-type cliques

Once all the possible tuples are identified, each associated with a strength score, we build a set
of (possibly overlapping) clusters in the form of cliques. A cluster is in the form of a clique if all
the tuples involving only nodes in the cluster have a score (strength of the relationships) above a
given threshold β. Consequently, the proposed algorithm requires the parameter β ∈ [0, 1], used
to consider a relationship relevant or not. The task to be solved is formalized in the following.

Given:

• a finite set of tuples {~vi}i, each associated with its own score si, computed according to the
algorithm described in Section 3.1;

• a threshold β;

• a (total) ordering relation <c between clusters, which should reflect the quality of the clusters
(the criteria considered in this paper are described in Section 3.5).

Find: a set of clusters in the form of cliques, according to β and the relation <c.

The algorithm consists of the following steps:

i) A filtering phase on the set of tuples, which keeps only the tuples with a score greater than
(or equal to) β. The result is the subset of tuples {~vi |si ≥ β}.

ii) The generation of an initial set of cliques, each consisting of a tuple in {~vi |si ≥ β}. This is
the input for Algorithm 1, which identifies the first hierarchy level L1.

12



iii) A process that iteratively merges two clusters G′ and G′′ into a new cluster G′′′ (see Al-
gorithm 1). The initial set of clusters is regarded as a list and is sorted according to the
ordering relation <c. Then, each cluster G′ is merged with the first cluster G′′ in the list
which leads to a merged cluster G′′′, which is still a clique. This process is repeated until
no more merging takes place.

The result of this phase is a set of clusters which defines the first level of the hierarchy L1. In the
next subsection we explain how we build the other levels.

3.3. Building the hierarchy of clusters

Once the first level L1 of the hierarchy has been identified, we evaluate whether some pairs of
clusters (cliques, in L1) can be reasonably merged to build the other levels.

The approach is similar to that adopted in Algorithm 1. The main difference is that, instead
of working on cliques, it works on generic clusters, where the strength score associated to each
tuple is not necessarily greater than β. This means that a different criterion for the identification
of candidates for merging has to be considered. In particular, we use a criterion which is inspired
by the research in hierarchical co-clustering, where a common stopping criterion is based on a
threshold applied to the quality of clusters obtained by merging two clusters [33]. Analogously,
in our approach, two clusters G′ and G” are merged into a cluster G′′′ if h(G′′′) > α, where α
is a user-defined threshold. Low values of α lead to a higher number of mergings at the price of
lower quality of clusters. The task is formalized in the following.

Algorithm 2 Identification of the hierarchy of clusters L1, L2, . . . Lk.
Require: The first level of the hierarchy L1; the ordering relation <c; the heuristic function h(·); the threshold α.
Ensure: The hierarchy of clusters L1, L2, . . . Lk .

k = 1;
repeat

L← Lk; k ← k + 1; clusters← [ ]; mergedClusters← [ ];
sort L according to <c;
for i = 1 to |L| − 1 do

merged ← f alse;
{Search for a merging which satisfies the threshold}
for j = i + 1 to |L| do

temp← merge(L[i], L[ j]);
if h(temp) >= α) then

add temp to mergedClusters;
remove L[ j] from L; merged ← true;

end if
end for
{If L[i] cannot be merged, add it to the result}
if merged = f alse then

add L[i] to clusters;
end if

end for
{Build a new level if there was at least one merging}
if mergedClusters , [ ] then

Lk ← clusters;
end if

until mergedClusters = [ ]
return L1, L2, . . . Lk
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Given:

• the first hierarchy level L1, identified as described in Section 3.2;

• the ordering relation <c;

• a threshold α;

• a heuristic function h(G) which evaluates a cluster G according to a quality criterion (the
criterion considered in this paper is described in Section 3.5).

Find: a list of hierarchical level [L1, L2, . . . , Lk], according to Definition 3.

The method, which is formally described in Algorithm 2, builds a new hierarchy level when a
further iteration of the repeat..until loop is possible. It is noteworthy that Lk (i.e., the top level of
the hierarchy) does not necessarily contain a single cluster, meaning that a forest of hierarchies
of clusters is actually returned.

3.4. Classification
Once the hierarchy has been identified, we define a classification function ψ(i)

p for each level i
and each target type Tp ∈ T ∗t . Unlabeled nodes are classified according to a variant of the ma-
jority voting algorithm which considers the overlapping among clusters. In particular, predictive
models are built by considering the labels of the nodes of the same type belonging to the clusters
in which the node falls.

Keeping in mind that we work in a semi-supervised learning setting, we have to deal with the
fact that both labeled and unlabeled nodes, possibly of different types, belong to the same cluster.
Obviously, clusters with a high percentage of labeled nodes lead to more reliable predictions. In
our approach we consider this aspect and we use the percentage of labeled nodes belonging to
each cluster, in order to compute a weight representing the reliability of the prediction model.

Formally, for each hierarchy level Li, the classification function ψ(i)
p (v) for an unlabeled node

v of the target type Tp exploits a weighted average of the probabilities that v belongs to the class
Y in a cluster G′:

P(cl(v) = Y |v ∈ un(G′p)) =
f req(Y, lab(G′p))

|lab(G′p)|
, (4)

where:

• cl(v) is a possible class (label) to associate with v;

• G′p is the set of nodes of type Tp in G′;

• lab(G′p) is the set of labeled nodes of type Tp in G′;

• un(G′p) is the set of unlabeled nodes of type Tp in G′;

• f req(Y, lab(G′p)) is the number of nodes of type Tp labeled as Y in G′p.

The classification function ψ(i)
p (v) can now be defined as:

ψ(i)
p (v) = arg max

Y∈Yp

∑
{G′ |v∈G′∧G′∈Li}

[
w(G′p) · P(cl(v) = Y |v ∈ un(G′p))

]∑
{G′ |v∈G′∧G′∈Li}

w(G′p)
, (5)
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Figure 5: Predictive models associated to each type of node in the heterogeneous network. Shapes indicate types of
object, while colors indicate class labels. White objects are unclassified objects. Ellipses represent possible clusters.

where {G′|v ∈ G′ ∧ G′ ∈ Li} is the set of clusters of level Li which v belongs to, and w(G′p) =

|lab(G′p)|/|G′p| is the percentage of labeled nodes of type Tp in G′.
To better explain how classification is performed, we report an example of classification mod-

els built for unlabeled nodes of clusters in Figure 5. In this example, an unlabeled circle node
belonging only to cluster g3 is classified according to the classification model of circle nodes built
from g3, that is, [red = 2/3, green = 1/3]. Therefore, it is classified as red. When a node falls
in more than one cluster, the classification model is built according to all the clusters involved,
according to Equation (5). For example, the white square node v′ belonging to both g1 and g2 is
classified according to the weighted average of the classification models [purple = 1, yellow = 0]
(cluster g1) and [purple = 2/3, yellow = 1/3] (cluster g2). Since g1 has 2 out of 3 labeled square
nodes, whereas g2 has 3 out of 4 labeled square nodes, the classification model of g1 will be asso-
ciated to a weight of 2/3, while that of cluster g2 will be associated to the weight 3/4. According
to Equation (5), v′ will be classified on the basis of the following model:

ψ(i)
p (v′) = arg max

purple,yellow

[
purple =

2/3 · 1 + 3/4 · 2/3
2/3 + 3/4

, yellow =
2/3 · 0 + 3/4 · 1/3

2/3 + 3/4

]
= purple

Here, we assume that unlabeled nodes are known and used during the clustering phase, which is
in line with the transductive variant of semi-supervised learning.

Formula (5) allows our method to capture the autocorrelation that relates a target attribute with
an independent attribute (relationally-lagged explanatory attributes) for two connected objects,
possibly of different types. This form of autocorrelation is more general than that which relates
a target attribute with itself (relationally-lagged response attribute). However, since we can con-
sider the same type more than once as the target type in clustering, we can force the method to
catch the form of autocorrelation which relates a target attribute with itself. This turns out to be
useful also when we have only one target type. To balance the contribution of the two forms of
autocorrelation, we introduce the parameter γ ∈ [0, 1]. With γ = 0 we only catch the autocor-
relation that relates a target attribute with an independent attribute, whereas with γ = 1 we only
catch the autocorrelation that relates a target attribute with itself.
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This means that ψ(i)
p (v) can be rewritten as:

ψ(i)
p (v) = arg max

Y∈Yp

(
γ ·

∑
{G′ |v∈G′∧G′∈L∗i }

[
w(G′p) · P(cl(v) = Y |v ∈ un(G′p))

]∑
{G′ |v∈G′∧G′∈L∗i } w(G′p)

+

+ (1 − γ) ·

∑
{G′ |v∈G′∧G′∈Li}

[
w(G′p) · P(cl(v) = Y |v ∈ un(G′p))

]∑
{G′ |v∈G′∧G′∈Li}

w(G′p)

)
(6)

where L∗i is the set of clusters belonging to the i-th hierarchical level, obtained by running the
algorithm considering one single target type twice (i.e., for type Tp, identified tuples consist of
two nodes of type Tp). In this way, we catch the autocorrelation between the target attribute (of
the nodes of type Tp) and itself.

3.5. The ordering relation <c and the heuristics h(·)

In this subsection, we describe the approach we adopt to sort clusters (i.e., the ordering relation
<c) and to select an appropriate candidate for merging (i.e., the heuristic function h(·)). Both
the ordering relation and the heuristic function aim at the maximization of the strength of the
relationships among nodes of different types in the clusters. In this way, we take into account the
(possible) dependencies among target attributes of different target types within the same cluster.

The considered measure is inspired by the concept of cohesiveness, which is typically used in
coclustering algorithms [33] to represent the average strength of the connection among objects of
two different types in the same cocluster. In this work, we extend this concept to multiple types
and, in particular, we consider the average score of all the possible tuples that can be built from
the nodes belonging to a cluster. Formally, we compute h(G′) as the multi-type cohesiveness:

h(G′) =
1

|tuples(G′)|
·

∑
~vi∈tuples(G′)

si (7)

where tuples(G′) is the set of tuples that can be built from the nodes belonging to G′, and si is
the score associated with each tuple. The ordering relation <c is then defined on the basis of the
heuristic function h(·): G′ <c G′′ ⇐⇒ h(G′) > h(G′′) that is, one cluster is processed before
another if it has a higher cohesiveness.

3.6. Time complexity

The analysis of the time complexity has to take into account the complexity of each single
phase, that is, the complexity of the identification of the possible tuples, the complexity of the
identification of the first and subsequent levels of the hierarchy of clusters and, finally, the com-
plexity of the classification of unlabeled nodes.
For the identification of possible tuples, we assume that:

• nodes are equally distributed among types, i.e., |V1| = |V2| = . . . = |V|T || = n;

• we consider at most c meta-paths connecting nodes of two different types;

• each node (of every type) is represented according to m attributes.
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In the worst case, a meta-path involves all the types of edge |R|. Therefore, for each pair of target
types, the time complexity for the identification of the tuples requires O(c · 2 · |R| · n) (for the
identification of the sequences, when nodes are indexed according to an order-preserving data
structure) plus O(c · n2 · m · |R|) (for the computation of the similarities among sequences that
start with a node of a target type and end with a node of another target type, when there is no
sequence that connects the two nodes, see Equation (2)). In these equations, m · |R| is due to the
computation of the similarity. This means that the cost of extracting tuples is: O(|Tt | · (|Tt |−1)/2 ·
c · (2 · n · |R| + n2 · m · |R|)), where |Tt | · (|Tt | − 1)/2 represents the number of possible pairs of
target types. Since n2 · m · |R| dominates over 2 · n · |R| and since |Tt | and c are small constants,
the complexity for identifying tuples is:

O(n2 · m · |R|) (8)

As for the identification of the first and subsequent levels of the hierarchy, we have to take into
account the number of tuples which, in the worst case, is O(|Tt | · (|Tt | − 1)/2 · γ2) = O(γ2), where
γ � n is the average number of objects of a given target type which are connected, according to
a meta-path, to a node of another target type.

Therefore, if a cluster contains O(γ2) tuples, each iteration of the repeat...until loop of both
Algorithms 1 and 2 for the evaluation of h(·) costs O(γ4) (due to the pairwise evaluation of
the clusters). By assuming that the number of clusters halves at each iteration (which happens if
each cluster can be merged with another cluster), the number of possible iterations is O(log2(γ2)).
Therefore, the complexity of Algorithms 1 and 2 can be approximated to:

O(γ4 · log2(γ2)) (9)

The classification of unlabeled nodes only requires a scan of the clusters (at all the levels) and
the application of the classification algorithm, whose time complexity is linear in the number
of nodes that fall in the containing clusters. This means that the complexity of this phase is
linear with respect to: the number of hierarchical levels (k), the number of target types with an
associated scheme (|T ∗t |), n, the number of clusters and the average number of labeled examples
per cluster.

In short, by combining Equations (8) and (9) with the time complexity of the classification
phase, we have that the time complexity of the whole algorithm is:

O(n2 · m · |R| + γ4 · log2(γ2)) (10)

which strongly depends on the value of γ. If the dataset, according to the meta-paths, has a
relatively small number of connections (i.e., γ4 · log2(γ2) ≤ n2 · m · |R|), the time complexity is
O(n2 · m · |R|). Otherwise, the time complexity is O(γ4 · log2(γ2)).

4. Experiments

The proposed method has been implemented in the system HENPC (HEterogeneous Net-
work Predictive Clustering), which is publicly available at www.di.uniba.it/~gianvitopio/
systems/henpc/. In this section, we describe the experiments aiming at the evaluation of
HENPC for both clustering and classification tasks.

Before presenting the results, in the following subsections, we briefly describe the considered
datasets, the competitor systems and the experimental setting.
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4.1. Datasets
As for the datasets, we give some details about the number of nodes, the number of edges and

the considered target types.
WEBKB. This dataset contains web-pages collected by the World Wide Knowledge Base

project of the CMU group4. We processed it in order to create a network consisting of 3 node
types and 3 edge types. The clustering task focuses on pages and terms, while the classifica-
tion task focuses on pages, which are classified into: student, faculty and course. The network
contains 1,586 nodes and 34,359 edges.

UWCSE. This dataset contains data about the Department of Computer Science and Engineer-
ing of the University of Washington5. The data include faculty members, their publications, their
projects and the courses they teach. Moreover, there is all the required information to describe
the relationships among faculty members. We processed the dataset in order to create a network
consisting of 7 node types and 7 edge types. The clustering task focuses on persons and courses,
while the classification task focuses on courses, which are classified into: graphics, theory, ai,
language and systems. Overall, the network contains 785 nodes and 1,104 edges.

DBLP. This dataset contains data about the co-authorship of scientific papers in computer sci-
ence stored in the DBLP database. We discarded papers written by a single author. Moreover, we
performed an equal-frequency discretization on the number of citations of each paper, obtaining
three discrete values: low, medium and high. Finally, we processed the dataset in order to create
a network consisting of 3 node types and 2 edge types. Clustering focuses on papers and authors,
while classification focuses on papers, which are classified into: low, mid and high (number of
citations). The network contains 1,867 nodes and 2,494 edges.

MOVIES. This dataset is built from the MovieLens100k dataset6 and contains ratings from
1,000 users on 1,700 movies, which are collected by the movielens recommender system. We
processed the dataset in order to create a network consisting of 4 node types and 3 edge types.
The clustering task focuses on users and movies, while the classification task focuses on movies,
which are classified into: comedy, thriller, drama and action. The network contains 2,051 nodes
and 59,532 edges.

YELP. Yelp is a website where it is possible to find, review and talk about business activi-
ties. The dataset has been released for academic purposes7, to supply real-world data for the
experimental evaluation of machine learning methods. Data include: businesses, business char-
acteristics, users, check-in information, friendship relationships, tips and reviews. We processed
the dataset in order to create a network consisting of 7 node types and 8 edge types. Both cluster-
ing and classification focus on business and users. In particular, we select the top-four categories
of businesses, that are: Restaurants, Beauty & Spas, Health & Medical and Shopping, whereas
users are classified into: low and high, representing the average rating they gave to businesses.
The processed network contains 41,006 nodes and 41,906 edges.

IMDB. This dataset8 is an extension of the MovieLens10M dataset, published by the Grou-
pLens research group. It links the movies of the MovieLens dataset with their corresponding web
pages in Internet Movie Database (IMDb) and Rotten Tomatoes movie review systems. From
the dataset, we kept users with both rating and tagging information. Moreover, we processed the

4www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
5alchemy.cs.washington.edu/data/uw-cse/
6grouplens.org/datasets/movielens/
7www.yelp.com/dataset_challenge
8grouplens.org/datasets/hetrec-2011/
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dataset in order to create a network consisting of 13 node types and 16 edge types. Clustering
focuses on users and movies, while classification focuses on movies, which are classified into:
comedy, thriller, drama and action. The network contains 97,030 nodes and 56,153 edges.

4.2. Experimental setting

In order to evaluate the clusters identified by HENPC, we performed a comparison with the
system HOCCLUS2 [33], which also discovers possibly overlapping and hierarchically orga-
nized clusters. It is tailored to work with two object types (i.e., it is a co-clustering algorithm)
and was originally used in bioinformatics to discover biological correlations between microR-
NAs and target genes.

In order to perform a fair comparison of the clustering results, we consider an evaluation mea-
sure which is different from the optimization criterion adopted by both HENPC and HOCCLUS2.
In particular, the identified clusters are evaluated in terms of a variant of the Q-Modularity [32],
which measures the quality of the clustering with respect to a random clustering. This variant is
described in the following. Let:

e(G′,G′′) =
1

2|E ∪ Ê|

∑
~vi∈tuples(G′,G′′)

si

be a measure of the strength of the edges considering objects in cluster G′ and objects in cluster
G′′, where tuples(G′,G′′) is the set of tuples that can be built between objects of different types
belonging to clusters G′ and G′′. Intuitively, we aim at clusters for which e(G′,G′) values are
generally large and values e(G′,G′′),G′ , G′′ are generally small. Inspired by [32], we define
the Q-Modularity for the clusters obtained at a hierarchical level i as:

Qi =
∑

G′∈Li

e(G′,G′) −
∑

G′′∈Li

e(G′,G′′)

 . (11)

As regards the classification task, we compare HENPC with four competitor systems which are
able to work on data organized in a heterogeneous network. They are:

• MrSBC [6]9, which exploits the naı̈ve Bayes classification method in the multi-relational
setting.

• RelIBk [48], which is the multi-relational version of the k-NN algorithm and is available
in RelWeka10. As the distance measure, we adopt the Relational Instance-Based Learning
(RIBL) measure [21].

• RelSMO [48], which is the multi-relational version of Platt’s Sequential Minimal Opti-
mization algorithm [35] and is available in RelWeka10. This algorithm is based on kernel
Support Vector Machines and exploits the kernel Minkowski RIBL set distance [24].

• GNetMine [19], a graph-based regularization framework which aims at preserving the net-
work structure of each type of link separately.

9www.di.uniba.it/~ceci/micFiles/systems/MURENA.html
10kappa.arisco.pl/~adamw/home_page/rel_weka/
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Note that MrSBC, RelIBk and RelSMO perform single-type classification, therefore we learn
a model and evaluate the results for each target type in the set T ∗t separately. Moreover, although
GNetMine is, in principle, able to perform multi-type classification, it assumes that all the target
types have the same classification scheme (i.e., the set of possible labels is common). We per-
formed some preliminary experiments with GNetMine and discovered that this assumption leads
to very poor results when different classification schemes are assigned to different object types
(as, for example, in the case of the dataset Yelp). Such a poor result is mainly due to the fact that
the system assigns labels belonging to the classification scheme of a target type also to unlabeled
nodes of other target types. For this reason, also for GNetMine, in the following we report the
results obtained by learning a model for each target type in the set T ∗t separately.

We evaluate the classification performance according to the accuracy measure, which is de-
fined, for each target type Tp ∈ T

∗
t , as:

acc(Tp) =

∑
Y∈Yp

T PY

|un(Vp)|
, (12)

where T PY is the number of true positive examples for the class Y .
For both clustering and classification, we average the results obtained with a stratified 10-fold

cross validation. For classification, we report the weighted (according to the number of classes)
average results obtained on multiple target types.

As regards the parameters of HENPC, we set c = 3 (the number of considered shortest meta-
paths), in order to guarantee that the best meta-paths are considered, and depth = 2 (for the
aggregation of attribute values coming from connected nodes which do not appear in any meta-
paths). As for the parameter β, since the distribution of scores can vary significantly among
datasets, we compute the value of β such that we keep a given percentage of tuples. In particular,
we consider 20%, 40% and 60% of tuples. This also allows us to evaluate how the accuracy of
the results changes when the number of tuples increases. As regards the parameter α, we follow
the recommendations in [33], where a similar merging approach is proposed: We set α = β−0.2.
Finally, we set γ to the values {0.7, 0.8, 0.9}, which, according to some preliminary experiments,
generally lead to the best results.

The parameters of the competitor systems have been set as follows. HOCCLUS2 requires two
parameters, i.e. α and β. Since they have a similar role with respect to α and β of HENPC (i.e.,
a threshold on the merging procedure and a threshold on the edge weight), we set them to the
same values considered for HENPC. MrSBC, RelIBk and RelSMO require the parameter depth
(maxPathLength in MrSBC), which is the maximum depth of analysis from the target nodes.
Since its role is similar to that of the parameter depth of HENPC, we set it to the same value
(i.e., 2). As for the parameter k of RelIBk (i.e., the number of nearest neighbors considered for
the classification), we consider the values {1, 3, 5}. Finally, GNetMine requires a weight for each
node type and link type. We leave these weights to the default values, which assume that all node
types and link types have the same weight.

4.3. Results

In this section, we describe the results obtained by HENPC and the competitor systems on the
considered datasets. First, we analyze the clustering results, which are reported in Table 1.

Overall, we focus on the first three hierarchical levels which appear, according to the clustering
and classification results, to be the most significant. We can observe that HENPC is always able
to identify at least three hierarchical levels for all the datasets, except for UWCSE. Moreover,
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Table 1: Q-Modularity obtained by HOCCLUS2 and HENPC. Bold values indicate the best result obtained for a given
dataset and a given percentage of considered instances. L1, L2 and L3 indicate the level of the hierarchy.

DBLP β: 20% β: 40% β: 60% WEBKB β: 20% β: 40% β: 60%
HENPC L1 0.64840 0.60114 0.54510 HENPC L1 0.98684 0.77932 0.77937
HENPC L2 0.64674 0.60423 0.54487 HENPC L2 0.97914 0.77868 0.77878
HENPC L3 0.63536 0.60296 0.53310 HENPC L3 0.96622 0.77783 0.7773
HOCCLUS2 L1 0.33482 0.07372 0.11779 HOCCLUS2 L1 0.19096 0.19096 0.19096
HOCCLUS2 L2 N/A N/A N/A HOCCLUS2 L2 0.20774 0.20774 0.20774
HOCCLUS2 L3 N/A N/A N/A HOCCLUS2 L3 0.21558 0.21558 0.21558

MOVIES β: 20% β: 40% β: 60% UWCSE β: 20% β: 40% β: 60%
HENPC L1 0.90369 0.79598 0.74514 HENPC L1 0.99304 0.87153 0.79293
HENPC L2 0.90279 0.79357 0.74093 HENPC L2 0.98818 0.85076 0.78142
HENPC L3 0.89745 0.78821 0.73239 HENPC L3 N/A N/A N/A
HOCCLUS2 L1 0.14783 0.10663 0.18794 HOCCLUS2 L1 0.38254 0.3701 0.36977
HOCCLUS2 L2 0.19603 0.1518 0.24356 HOCCLUS2 L2 0.41279 0.40052 0.39647
HOCCLUS2 L3 0.25359 0.20187 0.28913 HOCCLUS2 L3 0.42437 0.41169 0.40862

YELP β: 20% β: 40% β: 60% IMDB β: 20% β: 40% β: 60%
HENPC L1 0.76875 0.77887 0.71998 HENPC L1 0.82422 0.77225 0.69099
HENPC L2 0.80390 0.76771 0.70514 HENPC L2 0.79848 0.71135 0.65255
HENPC L3 0.79622 0.73753 0.69806 HENPC L3 0.72499 0.66142 0.57746
HOCCLUS2 L1 0.04046 0.17437 0.09984 HOCCLUS2 L1 0.15364 0.4175 0.37215
HOCCLUS2 L2 0.05029 0.15234 0.07424 HOCCLUS2 L2 0.20782 0.47259 0.34343
HOCCLUS2 L3 N/A N/A N/A HOCCLUS2 L3 0.24304 0.39406 0.20905

in some cases, the quality of the clusters obtained increases at the second level of the hierarchy,
emphasizing that the merging procedure is able to improve the clustering results. However, it
appears that, for the clustering task, the first hierarchical level is generally able to obtain the best
results. On the other hand, HOCCLUS2 is not always able to identify at least three hierarchical
levels and, in general, the Q-Modularity obtained is significantly lower. This is possibly due
to the fact that, in some cases, HOCCLUS2 discards objects that are considered as noise and
thus loses possibly significant links. As expected, Q-Modularity is higher for smaller values of
β. This is somehow natural since Q-Modularity is higher when we only focus on tuples with a
higher strength of the relationship (scores).

In order to statistically compare HENPC with HOCCLUS2, we performed the Friedman test
with the Nemenyi post-hoc tests and, following the suggestions made in [10], we plot the graphs
which summarize the results in Figure 6. By observing the graphs, we can conclude that HENPC
is able to significantly outperform the competitor in all the considered datasets, especially in
the case of the first and the second level of the hierarchy. This confirms that, even stopping the
algorithm at the first hierarchical level, the behavior of HENPC is robust, independently of the
considered dataset.

In order to evaluate whether the clustering quality reflects on the classification accuracy, in Ta-
ble 2, we report the accuracy values obtained by HENPC on the first three levels of the hierarchy,
together with the results obtained by the competitor systems.

As can be observed from the table, HENPC outperforms all the competitors on the datasets
UWCSE and WEBKB, independently of the parameters and for almost all the hierarchical lev-
els. In any case, clustering obtained at the first level of the hierarchy guarantees that HENPC
outperforms all the competitors in terms of classification accuracy.

As regards MOVIES, we can observe that HENPC, at the first level, obtains a result which
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Figure 6: Results of the Nemenyi post-hoc test for the clustering task. Better algorithms are positioned on the right-hand
side, and those that do not significantly differ in performance (at p-value=0.05) are connected with a line. The level of
the hierarchy is denoted with a subscript in the name of the algorithm.

is comparable to that of RelIBk and RelSMO, and outperforms MrSBC and GNetMine. This
is possibly due to the RIBL similarity, which is able to capture similar network characteristics
considered by HENPC. On the dataset YELP, HENPC outperforms all the competitors both on
single target types and on average, when at least 40% of the tuples are considered (i.e., β such
that 40% of tuples is kept), whereas the accuracy degenerates when only 20% of tuples is kept.
Moreover, also in this case, the best results are obtained at the first level of the hierarchy. On
the dataset DBLP, HENPC outperforms all the competitors at the first level of the hierarchy,
when we keep 40% of the tuples. In the other cases, MrSBC is able to obtain better results,
probably because of the availability of features whose data distribution is profitably exploited by
the naı̈ve Bayes approach. Finally, on the dataset IMDB, HENPC outperforms RelIBk, RelSMO
and GNetMine on the first level of the hierarchy, but the best results are obtained by MrSBC,
which possibly takes advantages of the availability of the node features.
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Table 2: Accuracy obtained by HENPC and the competitors on all the considered datasets. Bold values indicate that
HENPC outperforms all the competitors.

UWCSE WEBKB MOVIES
System Params Tp : courses; S p : discipline Tp : pages; S p : category Tp : movies; S p : genre

k = 1 0.141 0.606 0.510
RelIBk k = 3 0.152 0.606 0.510

k = 5 0.152 0.606 0.510
RelSMO 0.205 0.612 0.510
MrSBC 0.274 0.510 0.433

GNetMine 0.253 0.937 0.485
HENPC γ β: 20% β: 40% β: 60% β: 20% β: 40% β: 60% β: 20% β: 40% β: 60%

0.70 0.254 0.317 0.283 0.974 0.978 0.974 0.509 0.510 0.510
Level 1 0.80 0.254 0.279 0.263 0.974 0.978 0.974 0.510 0.510 0.510

0.90 0.254 0.290 0.256 0.974 0.976 0.974 0.510 0.510 0.510
0.70 0.374 0.326 0.300 0.804 0.804 0.804 0.390 0.394 0.391

Level 2 0.80 0.374 0.336 0.300 0.804 0.804 0.806 0.391 0.394 0.391
0.90 0.374 0.344 0.300 0.806 0.806 0.808 0.391 0.394 0.391
0.70 N/A 0.312 0.283 0.789 0.790 0.790 0.393 0.397 0.391

Level 3 0.80 N/A 0.304 0.283 0.794 0.792 0.794 0.393 0.397 0.391
0.90 N/A 0.330 0.283 0.794 0.798 0.802 0.393 0.397 0.391

YELP
System Params Tp : business; S p : category Tp : users; S p : average rate µt

k = 1 0.519 0.560 0.532
RelIBk k = 3 0.519 0.614 0.551

k = 5 0.516 0.591 0.541
RelSMO 0.593 0.484 0.557
MrSBC 0.460 0.600 0.507

GNetMine 0.497 0.492 0.495
HENPC γ β: 20% β: 40% β: 60% β: 20% β: 40% β: 60% β: 20% β: 40% β: 60%

0.70 0.377 0.628 0.575 0.546 0.650 0.626 0.433 0.635 0.592
Level 1 0.80 0.372 0.627 0.580 0.544 0.648 0.618 0.429 0.634 0.593

0.90 0.422 0.628 0.561 0.544 0.643 0.621 0.463 0.633 0.581
0.70 0.271 0.528 0.520 0.454 0.617 0.584 0.332 0.558 0.542

Level 2 0.80 0.272 0.536 0.518 0.454 0.614 0.586 0.333 0.562 0.540
0.90 0.271 0.533 0.490 0.453 0.614 0.586 0.332 0.560 0.522
0.70 0.282 0.495 0.484 0.472 0.625 0.585 0.345 0.539 0.518

Level 3 0.80 0.277 0.506 0.465 0.472 0.622 0.580 0.342 0.545 0.503
0.90 0.277 0.509 0.443 0.472 0.614 0.586 0.342 0.544 0.490

DBLP IMDB
System Params Tp : papers; S p : citation level Tp : movies; S p : genre

k = 1 0.416 0.501
RelIBk k = 3 0.433 0.523

k = 5 0.422 0.566
RelSMO 0.419 0.554
MrSBC 0.472 0.612

GNetMine 0.479 0.576
HENPC γ β: 20% β: 40% β: 60% β: 20% β: 40% β: 60%

0.70 0.442 0.480 0.460 0.592 0.592 0.592
Level 1 0.80 0.442 0.478 0.460 0.592 0.592 0.592

0.90 0.447 0.493 0.458 0.592 0.592 0.592
0.70 0.382 0.428 0.457 0.462 0.454 0.438

Level 2 0.80 0.382 0.430 0.455 0.462 0.453 0.438
0.90 0.383 0.423 0.455 0.462 0.453 0.438
0.70 0.390 0.375 0.432 0.463 0.468 0.506

Level 3 0.80 0.390 0.373 0.433 0.463 0.468 0.508
0.90 0.388 0.359 0.435 0.463 0.467 0.509
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Figure 7: Results of the Nemenyi post-hoc test for the classification task. Better algorithms are positioned on the right-
hand side, and those that do not significantly differ in performance (at p-value=0.05) are connected with a line. Subscripts
denote the level of the hierarchy.
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Table 3: Average running times (in seconds) required by HENPC and competitors on all the considered datasets.
RelIBk1 RelIBk3 RelIBk5 RelSMO MrSBC GNetMine HOCCLUS2 HENPC

DBLP 1.01 0.97 0.96 12.65 4.25 1.45 41.55 2.75
WEBKB 123.12 123.29 123.75 2630.07 2.45 15.57 20.95 92.46
MOVIES 601.47 595.41 605.52 2067.69 13.98 43.50 128.15 441.46
UWCSE 0.16 0.16 0.15 3.88 1.50 0.62 2.12 3.74
YELP 325.94 326.12 327.85 500.61 51.45 262.22 34.36 152.00
IMDB 36.89 37.10 37.43 211.25 31.68 358.71 0.91 1.62

Overall, we can conclude that keeping 40% of tuples, HENPC provides the best classification
results. Moreover, as regards the user-defined parameter γ, we can observe that the performance
in the range of values examined can be considered comparable. However, by looking at the
results in the tables, it is clear that, in general, γ = 0.7 (which gives a weight of 0.7 to the auto-
correlation that relates each target attribute with itself and a weight of 0.3 to the autocorrelation
that relates each target attribute with an independent attribute) leads to the best results.

Similarly to the analysis reported for the clustering task, also for the classification task we
performed the Friedman test with the Nemenyi post-hoc tests and plotted the graphs which sum-
marize the results in Figure 7. As we can observe from the graphs, the first level of the hierarchy
of HENPC leads to the most robust results over the considered datasets. In the case of the DBLP
and IMDB datasets, the system MrSBC shows better results, but for DBLP the difference is not
statistically significant.

By comparing the clustering and classification results, we can conclude that there is a strong
relationship between the clustering quality, measured in terms of Q-Modularity, and the classifi-
cation quality, measured in terms of accuracy. This result confirms one of the main assumption
which guided this work, that is: a strong relationship among a group of heterogeneous objects
possibly implies that their class values are correlated.

As a further evaluation, in Table 3 we report the average running time (in seconds) required
by HENPC and competitor systems to analyze the considered datasets, on a machine with four
3.5Ghz CPUs and 32GB of RAM. It is noteworthy that the comparison of running times should
take into account that HENPC solves both the clustering and the classification tasks, while HOC-
CLUS2 solves only the clustering task and RelIBk, RelSMO, GNetMine and MrSBC solve only
the classification task. From this table, we can observe that HENPC requires a comparable, and
often lower, running time with respect to RelIBk, RelSMO and GNetMine. However, if com-
pared with MrSBC, HENPC genrally requires higher running time. This is in line with naı̈ve
Bayesian approach implemented in MrSBC. However, in the three cases where MrSBC is faster
than HENPC (WEBKB, MOVIES and YELP) the accuracy obtained by HENPC is significantly
higher than that obtained by MrSBC (see Figure 7).

5. Conclusion

In this work, we consider the task of multi-type clustering and classification in heterogeneous
networks, i.e. with multiple types of nodes and edges, organized in an arbitrary structure. In order
to perform this task, we propose the algorithm HENPC, which extracts hierarchically organized,
possibly overlapping and heterogeneous clusters, and exploits them for predictive purposes. The
proposed algorithm is four-stepped: i) the identification of the strength of the relationships among
target nodes, which exploits the whole network structure; ii) the identification of an initial set of
heterogeneous clusters in the form of multi-type cliques; iii) the construction of a hierarchy of
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heterogeneous clusters, which allows the algorithm to possibly catch autocorrelation phenomena
at different levels of granularity; iv) the identification of classification functions by exploiting the
identified clusters.

The experiments performed on real datasets show that HENPC is able to outperform competi-
tors in terms of both clustering quality and classification accuracy. Moreover, we observed the
presence of a relationship between the clustering quality, measured in terms of Q-Modularity,
and the classification quality, measured in terms of accuracy. This confirms the assumption that
the identification of groups of strongly connected objects, even if they are heterogeneous, can be
exploited to catch autocorrelation phenomena and possibly improve the classification accuracy.

For future work, we intend to investigate the possibility of extending HENPC to the inductive
semi-supervised setting (not only transductive). Moreover, we will consider the exploitation of
the discovered heterogeneous clusters for the prediction of previously unknown links between
objects (heterogeneous link prediction).
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Appendix - Summary of the symbols used in the paper

Symbol Description
G = (V, E) Heterogeneous information network, represented as a graph
V Set of nodes of the graph G
E Set of edges of the graph G
G′ = (V′, E′) Generic heterogeneous cluster
V′ Set of nodes of the heterogeneous cluster G′

E′ ⊆ (E ∪ Ê) Set of edges of the heterogeneous cluster G′

Ê Set of edges identified by the clustering method

v′, v′′ ∈ V Generic nodes
tv(v′) Node type of node v′

T = Tt ∪ Ttr Set of possible node types
Tt Target types
T ∗t Target types with an associated classification scheme
Ttr Task-relevant types
Tp,Tq Generic node types
Vp ⊆ V Subset of nodes of type Tp
Xp Set of attributes {Xp,1, . . . , Xp,mp } associated to nodes of type Tp
G′p Set of nodes of type Tp in G′

lab(G′p) Set of labeled nodes of type Tp in G′

un(G′p) Set of unlabeled nodes of type Tp in G′

R Set of possible edge types
R j Generic edge type
e = 〈R j, 〈v′, v′′〉〉 Generic edge of type R j between nodes v′ and v′′

te(e) = R j Type of edge e = 〈R j, 〈v′, v′′〉〉
E j Subset of edges of type R j

Li Generic hierarchy level (a set of heterogeneous clusters)
k Number of hierarchy levels
S Set of possible classification schemes
S p Classification scheme associated to nodes of type Tp
φ : Tt → S Function which maps a target type to its classification scheme
ψ(i)

p : Vp → Yp Classification function for nodes of type Tp, based on level Li

Yp Range of the functions {ψ(i)
p }i=1,...k , defined according to scheme S p

Y ∈ Yp Generic value of the function range Yp
cl(v) A possible class label to associate to v

~vi Generic tuple of target nodes
si Strength of the relationship among all the nodes in tuple ~vi
vi, j j-th node of tuple vi
P Generic meta-path connecting two target nodes
seqd Sequence of nodes
XC(seqd′ , seqd′′ ) Target attributes of the nodes of the two sequences seqd′ and seqd′′

XNC(seqd′ , seqd′′ ) Non-target attributes of the nodes of the two sequences seqd′ and seqd′′

sx(seqd′ , seqd′′ ) Similarity between the values of attribute x in seqd′ and seqd′′

valx(seqd′ ) Value of attribute x in a generic sequence seqd′

h(G′′′) Heuristic function which evaluates the quality of cluster G′′′

α Parameter which controls the quality of the hierarchical clustering
β Threshold on the strength of the relationships among objects
γ Weight on the autocorrelation that relates the target attribute with itself
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