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Abstract. The reconstruction of gene regulatory networks via link pre-
diction methods is receiving increasing attention due to the large avail-
ability of data, mainly produced by high throughput technologies. How-
ever, the reconstructed networks often suffer from a high amount of false
positive links, which are actually the result of indirect regulation activi-
ties. Such false links are mainly due to the presence of common cause and
common effect phenomena, which are typically present in gene regulatory
networks. Existing methods for the identification of a transitive reduction
of a network or for the removal of (possibly) redundant links suffer from
limitations about the structure of the network or the nature/length of
the indirect regulation, and often require additional pre-processing steps
to handle specific peculiarities of the networks at hand (e.g., cycles).
In this paper, we propose the method LOCANDA, which overcomes these
limitations and is able to identify and exploit indirect relationships of
arbitrary length to remove links considered as false positives. This is
performed by identifying indirect paths in the network and by compar-
ing their reliability with that of direct links. Experiments performed on
networks of two organisms (E. coli and S. cerevisiae) show a higher ac-
curacy in the reconstruction with respect to the considered competitors,
as well as a higher robustness to the presence of noise in the data.
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1 Introduction

Recent studies in biology have been significantly supported by high throughput
technologies and by computational methods, which led to an improved under-
standing of the working mechanisms in several organisms. Such mechanisms can
be usually modeled through biological networks, which are able to easily describe
the considered biological entities as well as their relationships and interactions.
On the basis of the phenomenon under study, different types of biological net-
works can be considered. The most prominent example is that of networks model-
ing the control of transcription into messenger RNAs or proteins [2, 13]. In these
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Fig. 1. Network reconstruction from expression data. On the left, a matrix of M genes,
each associated to a vector containing the expression level measured under N different
conditions. In the middle, the gene-gene matrix obtained by pair-wisely computing a
similarity/correlation measure between the vectors. On the right, the reconstructed
network obtained by imposing a threshold on the values of the gene-gene matrix.

networks, called Gene-Regulatory Networks (GRNs), nodes represent molecular
entities, such as transcription factors, proteins and metabolites, whereas edges
represent interactions, such as protein-protein and protein-DNA interactions.

The direct observation of the real structure of these interaction networks
would require expensive in-lab experiments, usually performed through the so-
called epistasis analysis. Although in the literature we can find some computa-
tional approaches which support such an analysis [17], gene expression data are
much easier to obtain, therefore most of computational approaches proposed in
the literature focused on predicting the existence of interactions from gene ex-
pression data, mainly on the basis of link prediction methods. These approaches
analyze the expression level of the genes under different conditions (e.g., with a
specific disease or after a treatment with a specific drug) or, alternatively, under
a single condition in different time instants. The expression levels observed for
each gene are represented as a feature vector and a gene-gene matrix is built
by pair-wisely computing a similarity, correlation or information-theory-based
measure between the vectors associated to genes [6]. Finally, the existence of
links is inferred by imposing a threshold on the obtained score (see Figure 1),
where the direction is inferred only if the considered measure is asymmetric.

However, except for those based on clustering [15], these methods generally
assume the independence among the interactions, i.e., they focus on each pair of
genes separately, disregarding possible dependencies or indirect influences among
them. This assumption leads to predict false positive interactions, which are
usually due to causality phenomena: i) common regulator genes (also referred
to as common cause in the literature [9]) or ii) commonly regulated genes (also
referred to as common effect in the literature [9]). In the first case (see Figure
2(a)), the feature vector associated to a gene C which exhibits a regulatory
activity on two genes A and B will presumably be similar to the feature vectors
associated to A and B. However, even if there is no interaction between the genes
A and B, their feature vectors will appear similar, therefore a link between them
could possibly be detected. Analogously, in the second case (see Figure 2(b)), a
gene C which is regulated by two genes A and B will presumably have a feature
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(a) (b)

Fig. 2. Issues in the network reconstruction due to common cause (a) or common effect
(b) phenomena. The direction of the interactions does not appear in the reconstructed
networks if we consider the case of a symmetric similarity/correlation measure.

vector which is similar to the feature vectors associated to A and B. Therefore,
even if A and B do not interact, their feature vectors will be similar and a link
between them will possibly appear in the reconstructed network. Such issues are
even more evident when data are affected by noise. Indeed, possible measurement
errors can lead to a significant increment of false positives due to common cause
and common effect phenomena, compromising the quality of the reconstruction.

The presence of these phenomena in the reconstruction of gene regulatory
networks has been largely recognized in the literature, also considering possible
hidden common causes and hidden common effects [10], and several approaches
for post-processing the gene-gene matrix have been proposed. These methods,
usually called scoring schemes [6], analyze large sets of genes simultaneously,
in order to catch more global interaction activities and possibly reduce false
positives due to the presence of common cause and common effect phenomena.
One of the most popular scoring scheme is ARACNE [11], which evaluates all
the possible connected gene triplets and removes the edge with the lowest score.
ARACNE is limited to undirected networks and is not able to analyze more
global indirect interactions (i.e., involving more than three genes). However,
although the idea of removing the weaker edge is very simple, the intuition
of considering the score as an indication of the reliability of the interaction is
reasonable, and has been exploited by other works in the literature (e.g., [3]).

In this paper, inspired by the same idea, we introduce a new method, called
LOCANDA, which is able to identify interaction chains of arbitrary length and
is able to remove false positive interactions working on the identified chains. It is
noteworthy that the approach we propose in this paper has its roots in methods
for the analysis of graphs and, in particular, in works for the transitive reduction
[1, 7]. However, differently from existing methods, LOCANDA is able to handle
weighted, directed and possibly cyclic networks without any pre-processing step.

In the Section 2, we briefly describe existing methods which exploit causality
in the analysis or in the reconstruction of networks, giving emphasis to those
tailored for the identification and removal of indirect interactions in (biological)
networks. In Section 3, we describe our method LOCANDA, while in Section 4
we describe the experiments we performed and comment the obtained results.
Finally, in Section 5, we draw some conclusions and outline possible future works.
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2 Related Work

In the literature, we can find several approaches which catch and exploit causality
phenomena for different goals. A general framework for the identification of
causal links between variables [12] consists in i) the analysis of correlations,
which suggest possible (undirected) links, ii) the analysis of partial correlations,
which can be exploited to remove possibly indirect relationships and iii) some
assumptions on the structure of the network, such as acyclicity, which can suggest
the possible direction of links. It is noteworthy that such assumptions can be
easily violated in specific domains, such as biology, leading to an inaccurate
reconstruction. An example of application of such a framework can be found in
algorithms for learning the structure of Bayesian networks [9], which identify
causalities between variables by analyzing the d-separation among them, which
is based on the common cause and effect phenomena described in Section 1.

Other approaches exploit the concept of causality to identify a transitive
reduction of a graph [1, 7]. These methods analyze a graph and produce a new
graph containing a subset of links, which guarantees to convey the same informa-
tion of the original graph. This means that, analogously to the method proposed
in this paper, these approaches aim at removing edges that can be considered the
result of an indirect relationship. Specifically, the method proposed in [1] finds
a transitive reduction G′ of the initial graph G, where G′ has a directed path
from vertex u to vertex v if and only if G has a directed path from vertex u to
vertex v and there is no graph with such a property having fewer edges than G′.
In other words, the obtained graph G′ is the smallest graph (in terms of edges)
such that given any pair of nodes 〈u, v〉, if v is (respectively, is not) reachable
from u in the initial graph G, then v is (respectively, is not) reachable in the
reduced graph G′. This means that the information conveyed by the graph, in
this work, is associated to the reachability of nodes. Although based on the same
principles of LOCANDA, this approach requires the identification of an equiv-
alent acyclic graph before performing the analysis and is limited to unweighted
graphs. Therefore, it can not exploit information about the reliability commonly
associated to each edge in biological networks.

Analogously, in [7] the authors propose the identification of a Minimal Equiv-
alent Graph (MEG), whose definition is the same as the transitive reduction pro-
posed in [1]. The method consists of several steps, that are: i) the identification
of strongly connected components, ii) the removal of cycles from each compo-
nent, iii) the identification of the minimal equivalent graph for each component
and iv) the reintroduction of the edges removed in the step i). Even if more
sophisticated, this approach suffers from the same limitations described for [1].

Focusing on biological networks, in the literature, several approaches have
been proposed to consider specific issues as well to exploit specific characteristics
of such an application domain. In particular, it is possible to exploit the causal-
ity to infer the directionality of the interactions by exploiting time-series gene
expression data [6]. In this case, the regulator gene (the cause), by definition,
should act before the regulated gene (the effect). Therefore, a common strategy
consists in computing the similarity between two genes u and v, by performing a
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progressive shifting forward in time of the time-series associated to the first gene
u. If the similarity increases, then it is possible to conclude that u acts before v,
therefore u regulates v. More sophisticated approaches exploit Granger causal-
ity [8] or hidden (i.e., unobserved, latent) common causes and common effects
[10]. All these methods, however, are applicable only when analyzing time-series
data, while they cannot be applied when each gene is associated with a vec-
tor representing its expression values in different (steady) conditions. In [11],
the authors propose the (already mentioned) method ARACNE which exploits
causality phenomena to identify and remove indirect relationships. Analogously
to the approach presented in this paper, the method acts as a post-processing
phase of the network reconstruction, aiming at removing interactions considered
as the indirect effect of other interactions. This is performed by analyzing all the
triplets of connected genes and by removing the weakest interaction, i.e. the edge
with the lowest score. As already clarified, although based on the same principle
of LOCANDA, this approach is limited to indirect interactions involving only
three genes, thus it cannot identify interaction chains of arbitrary length.

In a more recent work [3], the authors propose a method for the identification
of the transitive reduction of biological networks. This method is able to analyze
both unweighted networks and possibly cyclic weighted networks. In this last
case, however, following the approach adopted in [14], it requires to pre-process
the network in order to make it acyclic. In detail, the method i) identifies and
shrinks the strongly connected components into single nodes, ii) applies the
reduction on the resulting acyclic graph, and iii) re-expands the components.
It is noteworthy that this procedure assumes that genes within each component
are fully connected and do not perform any reduction within each component,
since the results would strongly depend on the order of the analysis. Moreover,
it assumes that the graph resulting from the step i) is acyclic, i.e., there is no
cycle among the components. However, the reduction phase is based on an idea
which is similar to that adopted in LOCANDA, i.e. on the computation of an
uncertainty score for paths connecting nodes, and on the removal of direct links
having a higher uncertainty with respect to the identified indirect paths.

In summary, with respect to existing works in the literature, the method LO-
CANDA proposed in this paper identifies and removes links which are considered
as the result of indirect regulation activities, exploiting common cause and com-
mon effect phenomena. LOCANDA has the following distinguishing characteris-
tics: i) unlike classical methods for the identification of a transitive reduction of
networks [1, 7], it is able to work on weighted networks, which is relevant when
dealing with reconstructed biological networks where edges are associated to a
score/reliability; ii) unlike [11], it is able to work on directed networks, which
(if available) becomes important to correctly consider causality phenomena; iii)
similar to [3] and unlike [11], it is able to catch indirect relationships of arbitrary
length by comparing the reliability of direct links to that of identified indirect
relationships; iv) contrary to [1], [3] and [7] it is able to directly work on cyclic
networks, without any pre-processing steps and by guaranteeing the same result
independently on the order of analysis.
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3 The method LOCANDA

In this section, we describe the method LOCANDA for the identification and
removal of false positive links in a reconstructed gene network. The method is
based on the concepts of common cause and common effect already introduced
in Section 1. We remind that LOCANDA is not limited to the simple cases
depicted in Figure 2, but is able to detect and exploit indirect relationships of
arbitrary length. In the following, before describing our approach, we introduce
some useful notions and formally define the task we solve. Let:

– V be the set of genes, i.e., nodes in the reconstructed network.

– E ⊆ (V ×V ×R) be the set of interactions in the reconstructed network, i.e.,
weighted edges in the form 〈source node, destination node, edge weight〉.

– P be a generic path between two nodes v1 (source node) and vk (destination
node) in the network, defined as a sequence of nodes [v1, v2, . . . , vk], such
that ∀i=1,2,...,k−1,∃wi : 〈vi, vi+1, wi〉 ∈ E.

– f(P ) be a function that measures the reliability of the path P according to
the edges involved in its sequence of nodes.

A path P between u and v is considered more reliable than the edge 〈u, v, w〉 if
f(P ) > w. According to such an assumption, the task we solve consists in the

identification of a reduced set of edges Ẽ ⊆ E, satisfying the following properties:

– the reachability of nodes is preserved. Formally, given two nodes u, v, there
exists at least a path P connecting them through the edges in Ẽ if and only
if there exists at least a path P connecting them through the edges in E.

– an edge 〈u, v, w〉 is removed, i.e., it does not belong to the reduced set Ẽ, if
there exists a path P from u to v which is more reliable than 〈u, v, w〉.

Note that, contrary to [1] and [7], we do not require the minimality of the number
of edges in the reduced network, since we are not interested in pure transitive
reduction, but in removing possible false positive edges identified during the
reconstruction of the network. Indeed, in the case of reconstructed gene networks,
the fact that the information conveyed by a link can be represented by a sequence
of nodes (a path) is not a sufficient condition to consider the link as a false
positive due to the presence of common cause or common effect phenomena.
For this reason, we remove a link only if its reliability appears lower than the
reliability of the identified path, measured by f(·). In this work, we take into
account different possible measures to estimate the reliability of the path. In
particular, being w(vi, vj) the weight associated to the edge between vi and vj ,
we consider the following measures:

– Minimum (Min), which corresponds to the lowest edge weight in the path,
following the principle of the “weakest link in the chain”.
Formally, f([v1, v2, . . . , vk]) = min

i=1,2,...,k−1
w(vi, vi+1).
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– Product (Prod), i.e., the product of the edge weights involved in the path.
This approach is motivated by the common strategy adopted for the combi-
nation of probabilities of (naively independent) events.

Formally, f([v1, v2, . . . , vk]) =
∏k−1

i=1 w(vi, vi+1).

– Average (Avg), i.e., the average of the edge weights involved in the path.

Formally, f([v1, v2, . . . , vk]) = 1
k ·
∑k−1

i=1 w(vi, vi+1).

– Weighted Average (WAvg), i.e., the average of the edge weights involved in
the path, linearly weighted on the basis of their closeness to the source node.
This approach can be motivated by the assumption that the influence of the
source node on the other nodes in the path fades linearly on the basis of their
distance. Formally, f([v1, v2, . . . , vk]) = 1∑k−1

i=1
1
i

·
∑k−1

i=1

[
1
i · w(vi, vi+1)

]
.

The pseudo-code of the algorithm LOCANDA is reported in Algorithm 1. We
also report a running example in Figure 3. Before describing LOCANDA, we re-
mind that the method is able to analyze both undirected and directed networks,
weighted according to a score representing the reliability about the existence of
the interaction (computed by any method for network reconstruction). Here we
assume to work with a weighted directed network (the most general case), since
an unweighted network can be always mapped into a directed network by intro-
ducing an edge for each direction, with the same reliability score. The first step
of LOCANDA consists in the removal of self-edges (line 2), since some methods
for network reconstruction identify them erroneously. Although self-regulation
activities are possible in biology, in reconstructed networks such links are due
to errors in the computation of similarity/correlation measures on the vector
associated to a single gene. In our example, the self-edge on the node E (Figure
3(b)) is removed, leading to the network in Figure 3(c). Then the algorithm ana-
lyzes each node (that we call source node) aiming at identifying all the reachable
nodes and a path to reach them. Note that the visit of the network is performed
according to a depth-first and best-first strategy, based on the reliability of the
edges. The algorithm works in a greedy fashion, since an exhaustive exploration
of all the possible paths would lead to an exponential time complexity. When
there are several edges to follow, LOCANDA considers the path that locally (i.e.,
by observing only the neighborhood) appears the most reliable.

LOCANDA exploits three data structures: the set of visited nodes (visited),
the current sequence of nodes (path) and a stack, according to which nodes are
explored. Moreover, it exploits a structure (RT ) similar to the routing table used
by routing algorithms, which keeps information about the nodes reachable from
the source node. In particular, for each reachable node (destination), it stores:
– the next-hop, i.e., the node adjacent to the source node that we need to

follow to reach it, according to the current path.
– the path score associated to the current path, on which is based the choice

of the optimal path to keep. LOCANDA will prefer a new path with respect
to a previously identified path if this value is higher.

– the path weight, which represents the reliability associated to the current
path according to f(·), that will be exploited to remove links.
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Algorithm 1: Pseudo-code of the method LOCANDA.
Data:
·V : the set of genes (nodes in the network)
·E ∈ (V × V × R): the set of interactions (edges in the network), represented as
〈source node, destination node, edge weight〉

·f(·): the measure for the reliability of a path

Result:
·Ẽ: the updated (reduced) set of interactions

1 begin

2 Ẽ ← E \ E.getSelfEdges();
3 foreach src ∈ V do

/* Structures initialization. Records in the routing table RT are in the form
〈dest node, next hop, path score, path weight〉. Operations on RT are based on
dest node. Updates are considered as a new record if it does not exist. */

4 visited ← {src}; path ← [src]; path score ← 0; stack ← [ ]; RT ← [ ];

/* Initialize the routing table for adjacents of src */

5 foreach 〈src, adj, w〉 ∈ Ẽ in ascending order w.r.t. w do
6 RT.update(adj, adj, w, f([adj]));
7 stack.push(adj);

8 while stack is not empty do
9 current node ← stack.pop();

10 visited ← visited ∪ {current node};
11 edge weight ← Ẽ.getEdgeWeight(path.getLast(), current node);
12 old path score ← RT.getPathScore(current node);
13 new path score ← path score + edge weight;

/* Update the RT if the route does not exist or if the new path has a
higher score than the previous path */

14 if old path score = null or old path score < new path score then
15 next hop ← path.getFirst();
16 RT.update(current node, next hop, new path score, f(path));

/* Push non-visited adjacent nodes of the current node into the stack,
ordered by weight */

17 foreach 〈current node, adj, w〉 ∈ Ẽ in ascending order w.r.t. w do
18 if adj /∈ visited then
19 stack.push(adj);

/* Update the current path */
20 if some nodes were added to stack then
21 path.add(current node);
22 path score ← new path score;

23 else if stack is not empty then
24 next ← stack.top();

25 while 〈path.getLast(), next〉 /∈ Ẽ do
26 last ← path.getLast();
27 path.removeLast();

28 path score ← path score − Ẽ.getEdgeWeight(path.getLast(), last);

/* Remove a direct link if it is not used to reach other nodes and its less
reliable than the indirect link (path) */

29 all next hops ← RT.getAllNextHops();

30 foreach 〈src, adj, w〉 ∈ Ẽ do
31 if adj /∈ all next hops and w < RT.getPathWeight(adj) then

32 Ẽ ← Ẽ \ {〈src, adj, w〉};

33 return Ẽ;
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Note that we prefer to consider two different criteria for the choice of the optimal
path to consider (path score) and for the estimation of the reliability of the path
(path weight), since they could not be generally based on the same assumptions.
In particular, the path score will correspond to the sum of edges in the path,
since, combined with the adopted strategy for the choice of the edge to follow
(i.e., the highest), leads to the identification of long and reliable paths. On the
contrary, the estimation of the path weight will be based on several different
measures, that we will describe later.

The analysis of a source node is performed as follows. First, the data struc-
tures are initialized (line 4), by considering the source node as already expanded
and by adding it to the current path. Second, we analyze all its adjacent nodes,
i.e., we push them into the stack, ordered in ascending order according to the
edge weight, and initialize the routing table by setting themselves as their next-
hop (lines 5-7). Then, the main part of the algorithm (lines 8-28) iterates until
the stack still has some nodes to analyze. In particular, LOCANDA pops a
node (current node) from the stack (see Figure 3(d)), marks it as visited (lines
9-10), and computes the score associated with the current path to reach the cur-
rent node from the source (lines 11-13). If the current path is the first identified
path to reach current node or it has a higher score with respect to the previous
path in the routing table, LOCANDA updates the routing table (lines 14-16).

Then the algorithm expands the current node, by pushing its adjacent nodes
into the stack in ascending order with respect to the edge weight, if not already
visited (lines 17-19). If at least a node was pushed (see Figures 3(e), 3(f), 3(g)),
the current path is updated to follow current node (lines 20-22), otherwise (see
Figure 3(h)) the algorithm steps back, until it can find an existing edge between
the last node in the path and the next node in the stack (lines 23-28). In both
cases, the path and its score are updated incrementally (lines 22 and 26-28).

When there is no more nodes in the stack, LOCANDA removes all the direct
links such that the properties described before are satisfied. In particular, it
removes a link between the source node u and an its adjacent v if v is never
used as next-hop to reach other nodes and if the path identified to reach v from
u appears more reliable then the direct link (lines 29-32). The algorithm then
proceeds with the next source node. It is noteworthy that the removed links will
never be considered again from the algorithm. This can be done without any risk
to lose relevant paths, since those edges would never be considered in any case,
even analyzing the nodes of the networks in a different order. As an example,
the removed edge between A and B in Figure 3(i) would not be followed in any
case during the analysis of the node G as source node. Therefore, the order of
analysis of source nodes does not affect the resulting reduced network.

The immediate removal of such links also improves the algorithm time com-
plexity. Indeed, although in the pessimistic case LOCANDA has a time complex-
ity of O(|V | · |E|)1, this choice decreases the number of edges at each iteration.

1 For space constraint, we do not prove formally the time complexity of the algorithm.



10 Pio G., Ceci M., Prisciandaro F. and Malerba D.

(a) The initial reconstructed network. (b) The self edge on the node E.

(c) Self edge on the node E removed. (d) Node A expanded. Node C popped
from the stack (since the weight of A→C
was the highest).

(e) Node C expanded. Node B popped
from the stack (since the weight of C→B
was the highest).

(f) Node B expanded. Node D popped
from the stack (it was the only pushed
node, since C had been already visited).

(g) Node D expanded. Node E popped
from the stack (it was the only pushed
node, since C had been already visited).

(h) Node E expanded. No node pushed
into stack, since D had been already vis-
ited. It steps back to analyze F from C.

(i) Removal of the link A→B. (j) Reduced network, after the analysis
of all the nodes (f(·) = Minimum).

Fig. 3. An example of execution of LOCANDA and the analysis of the source node A.
Grey nodes: already expanded; blue node: the current node to analyze, extracted from
the stack; black edges: not seen yet; grey edges: already seen, but still not followed;
blue edges: belonging to the current path; red edges: will not be followed, since would
bring to already expanded nodes; black-dashed edges: to be removed.
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4 Experiments

We performed our experiments on the datasets considered in [4]. These datasets
consist of steady-state expression data (10 conditions), generated by the tool
SynTReN [16] on the basis of the well-defined regulatory networks of the organ-
isms E. coli and S. cerevisiae (henceforth Yeast) [6]. SynTReN selects connected
sub-networks of the input networks and generates gene expression data which
best describe the network structure. We consider sub-networks of 100 and 200
genes, characterized by 121 and 303 links, with an average node degree of 2.42
and 3.03, respectively. In order to evaluate the robustness to noise, coherently to
[4], we consider three versions of each dataset, with different levels of (additive,
lognormally-distributed) noise, i.e., 0.0 (without noise), 0.1 and 0.5, introduced
by SynTReN. Gene regulatory networks were reconstructed by adopting the sys-
tem GENERE [4], which, according to the experiments, obtains state-of-the-art
results in terms of Area Under the ROC Curve (AUC). In particular, we selected
the parameter configuration of GENERE which led to the best results.

We considered as a competitor the system ARACNE [11], that we already de-
scribed in Section 2. Moreover, we considered, as a baseline, the original network
reconstructed by GENERE. For all the systems, we performed the experiments
by imposing a lower threshold on the weight of the edges in {0.0, 0.1, . . . 1.0}.
For LOCANDA, we performed the experiments with all the measures for the es-
timation of the reliability of the path proposed in Section 3, that are: minimum
(Min), product (Prod), average (Avg) and weighted average (WAvg).

The evaluation measure that we consider is based on the Area Under the ROC
Curve. It is noteworthy that the classical AUC evaluation focuses on known
examples in the gold standard, disregarding all the predicted links for which
the existence is unknown. This means that the obtained AUC value can be
significantly distorted, since focused only on the small subset of known links in
the reconstructed network. Since, in real scenarios, the biologists have to analyze
the whole set of predicted links, possibly ranked in descending order with respect
to their score, we define the weighted AUC as follows:

WAUC(V, Ẽ) =

(
1− sumOfWeights(Ẽ)

|V | · (|V | − 1)

)
·AUC(Ẽ) (1)

where sumOfWeights(Ẽ) =
∑
〈u,v,w〉∈Ẽ(w) is the sum of edge weights in the

reduced reconstructed network, AUC(Ẽ) is the classical Area Under the ROC
Curve and |V | · (|V | − 1) is the number of possible links in the network. It is
noteworthy that this measure penalizes the original AUC score proportionally to
the number (and the weight) of links in the reduced network. This is motivated
by the fact that a large set of predicted links, all with a high score (i.e., without
a clear indication about their rank) would require an extensive manual analysis
performed by biologists. On the other hand, reconstructed networks with many
links will not be penalized significantly if a large set of links has a very low score,
since they would be probably disregarded by biologists during their analysis.
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Note that, due to the weighting defined in Equation 1, WAUC values near to 0.5
do not correspond to a random prediction as in the standard AUC evaluation.

The obtained results are plotted in the box plots depicted in Figure 4. Box
plots are drawn by considering the different values for the input threshold on
the edge weight. This allows us to evaluate the stability of the results with
respect to such a parameter. First, we can observe that ARACNE, GENERE and
LOCANDA Prod obtain unstable results with respect to the input threshold,
whereas the other variants of LOCANDA obtain very stable results. Moreover,
we can observe that the networks reconstructed by GENERE appear, in general,
accurate and often lead to the highest WAUC value (see the datasets Ecoli-100-
0.1, Ecoli-200-0.1, Ecoli-200-0.5, Yeast-100-0.1, Yeast-100-0.5, Yeast-200-0.0 and
Yeast-200-0.1). However, such a result can be obtained with a specific value of
the input threshold and a wrong decision can lead to very poor results. On the
contrary, a non-optimal choice of the value for the input threshold does not
affect significantly the results obtained by LOCANDA Min, LOCANDA Avg
and LOCANDA WAvg, that lead to stable and high WAUC values in almost all
the cases. ARACNE generally obtains lower WAUC values, which also appear
highly dependent on the value of the input threshold. An exception can be
observed in the dataset Ecoli-200-0.0 in which ARACNE obtains the best result.

Analyzing the influence on the results caused by the presence of noise in the
data, we can observe that, without noise or with a low amount of noise, GENERE
and ARACNE obtain acceptable (although unstable) results. However, when the
amount of noise increases, their average WAUC values decrease significantly. On
the contrary, LOCANDA, especially with the variants based on Min, Avg and
WAvg, generally shows good and stable results, even in the case of the datasets
with the highest noise. This proves that the proposed method is actually very
robust to the possible presence of noise in the data.

Finally, we performed the Friedman test with the Nemenyi post-hoc test, with
α = 0.05, in order to evaluate whether the obtained results appear significant
from a statistical viewpoint. Following [5], we plot a graph which summarizes the
results in Figure 5. Observing the graph, we can conclude that, although LO-
CANDA Min generally leads to the best results, the difference among the three
variants based on Min, Avg and WAvg is not statistically significant. However,
the difference between the results obtained by these three variants and by the
other approaches, including ARACNE and GENERE, is statistically significant.

The non-optimal results obtained by the variant based on product can be
motivated by the fact that it is based on assumptions that are often violated in
biological networks (i.e., the independence between the events). On the contrary,
the very good results obtained by the variants Min and WAvg can be motivated
by the fact that their assumptions correctly reflect the real interactions among
genes. At this respect, we can conclude that: i) the variants based on Min and
WAvg are the most appropriate for the reconstruction of gene networks, and ii)
LOCANDA can be easily adapted to analyze networks representing data about
other application domains, by identifying a proper function f(·) able to catch
specific assumptions of the domain at hand.
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Fig. 4. Box plots depicting the results. On the X-axis there are the different methods;
on the Y-axis there is the WAUC obtained by varying the threshold on the edge weight.
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Fig. 5. Results of the Friedman test and Nemenyi post-hoc test with α = 0.05.

5 Conclusions and Future Work

In this work, we proposed the method LOCANDA for the analysis of recon-
structed biological networks, which identifies and exploits causality phenomena
to remove links which can be considered the result of indirect regulation activi-
ties. Contrary to existing methods for the identification of a transitive reduction
of a network or for the identification of redundancies in reconstructed biological
networks, LOCANDA simultaneously offers all the following characteristics: i) it
is able to analyze directed weighted networks, fully exploiting the weights on the
edges which represent their reliability; ii) it does not require any pre-processing
step on the network in order to handle the possible presence of cycles; iii) it is
able to identify indirect relationships of arbitrary length and to exploit them to
remove direct links considered as false positives. The estimation of the reliabil-
ity of a path is guided by a function, which can be tuned according to specific
underlying phenomena and assumptions with respect to the application domain
at hand. Focusing on biological networks, the obtained results show that LO-
CANDA, especially in its variant based on minimum, is able to obtain better and
more stable results with respect to the considered competitors, even with highly
noisy data. Moreover, according to the Friedman test and Nemenyi post-hoc
test, such difference appears statistically significant.

As future works, we plan to compare LOCANDA with additional competitor
systems, also in the analysis of a larger network about the Homo Sapiens. We will
also perform a qualitative analysis of the results, guided by experts in biology.
Moreover, we will evaluate the effectiveness of LOCANDA in the analysis of
networks representing data about other domains, focusing on the influence of
the function f(·) when different assumptions on the network are verified.
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