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Abstract. Most of works on text categorization have focused on clas-
sifying documents into a set of categories with no relationships among
them (flat classification). However, due to the intrinsic structure that
can be found in many domains, recent works are focusing on more com-
plex tasks, such as multi-label classification, hierarchical classification
and multidimensional classification. In this paper, we propose the hier-
archical multidimensional classification task, where documents can be
classified according to different dimensions/viewpoints (e.g., topic, geo-
graphic area, time period, etc.), where in each dimension categories can
be organized hierarchically. In particular, we propose the system Multi-
WebClass, a multidimensional variant of the system WebClassIII, which
discovers correlations among categories belonging to different dimensions
and exploits them, according to two different strategies, to refine the set
of features used during the learning process. Experimental evaluation
performed on both synthetic and real datasets confirms that the ex-
ploitation of correlations among categories can lead to better results in
terms of classification accuracy, possibly reducing specialization error or
generalization error, depending on the strategy adopted for the refine-
ment of the feature sets.

Keywords: Structured Output Prediction, Text Categorization, Hier-
archical Classification, Multidimensional Classification

1 Introduction

The number of web documents continuously and massively increases every day
and their automatic classification is considered an essential task. In recent years,
a plethora of classification algorithms has been developed. Some of them work in
the single label classification setting, where categories are not organized accord-
ing to any specific schema. However, (web) documents can naturally be classified
into several hierarchically organized categories. For example, a blog article clas-
sified as Sport could, at the same time, be classified as Tennis, Roland Garros,
and so on. For this reason, recent works have focused on the hierarchical classi-
fication task, where class labels are hierarchically organized and each object is
associated to more than one class label (according to the hierarchy).
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Moreover, documents can be classified according to different classification di-
mensions. For example, a web page could be classified according to its topic, the
referenced geographical information or the publication date. By considering mul-
tiple dimensions of classification, each of which possibly hierarchically organized,
it is possible to define the task of Hierarchical Multidimensional Classification.
More formally, this task represents the combination of Multidimensional Classi-
fication and Hierarchical Classification, where: i) more than one class attribute
is associated to each document, each describing the document according to a
different point of view and ii) each class attribute is hierarchically organized.

In the literature, several works about multidimensional classification and hi-
erarchical classification have been proposed. Some works consider the first task
as a variant of (and, accordingly, convertible to) the latter, whereas other works
consider these two tasks separately. For example, in [2] a multidimensional clas-
sification method based on Bayesian Network is proposed. The authors perform
multidimensional classification on a flat set of labels by organizing class vari-
ables (dimensions), feature variables and bridges (from classes to features) as
three distinct network subgraphs. In [14], the authors propose the application
of multidimensional classification approaches to biomedical texts, in order to
extract specific portions of text containing scientific content.

In [16] the authors propose a framework which implements three different
classifiers (kNN, näıve Bayes and centroid-based) in order to evaluate three
different techniques for multidimensional classification: flat-based, hierarchical-
based and multidimensional-based. In the first two cases, they convert the mul-
tidimensional model into flat and hierarchical models, respectively, whereas in
the last case they consider each dimension separately. Experiments performed
on two datasets showed that the multidimensional-based and hierarchical-based
approaches outperform the flat-based approach.

Moreover, in a recent work [7], the hierarchical multidimensional classification
task is solved by considering it as a multi-label classification task. First, the
system builds a set of probabilistic multi-class classifiers (one for each non-leaf
node in the hierarchy) which are applied simultaneously to each test instance.
Second, a probability is computed for each path in the hierarchy, by combining
the output of the classifiers learned for the nodes involved in the path. Finally,
the path with the highest probability is the output of the classification.

In this paper, we extend the system WebClassIII [5] (described in Section 2),
which offers a hierarchical classification framework, with the more complex task
of Hierarchical Multidimensional Classification. Moreover, we exploit the possi-
ble multi-dimensionality of the data in order to improve the classification with
respect to each single dimension, which are generally classified independently by
existing works. In order to exploit such possible dependencies, we propose the
identification of correlations among categories belonging to different hierarchies.
Such correlations can be exploited to improve the classification accuracy with
respect to a given hierarchy, even when the other hierarchies are not the main
subject of the classification task. The discovery of correlations is motivated by
the reasonable assumption that documents labeled with a given category along
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one dimension could be usually labeled with another given category belonging to
another dimension. For example, we can consider documents organized accord-
ing to the Geographic dimension and the Topic dimension. If many documents
labeled with Rome in the Geographic hierarchy (structured as Europe → Italy →
Rome), are also frequently labeled as Traffic in the Topic hierarchy (structured
as News → Accident → Traffic), then it is possible that there is a correlation
between the categories Rome and Traffic, possibly representing the fact that:
“Rome is affected by an high number of accidents due to traffic”.

The rest of the paper is organized as follows. In the next section, the classifi-
cation framework implemented in WebClassIII, which represents the background
of this work, is described. In Section 3 the extension of WebClass to perform
hierarchical multidimensional classification is presented. Some experimental re-
sults on both synthetic and real datasets are reported and discussed in Section
4. Final conclusions and remarks are reported in Section 5.

2 Background: WebClassIII

WebClass is a classification framework for HTML pages. The last version of
WebClass, i.e., WebClassIII, is an extension for the hierarchical text categoriza-
tion [5] which exploits three different classification approaches: Näıve Bayes [10],
centroid-based [6] and SVM [11].

The hierarchical organization of categories is exploited in all the phases of
the document classification, namely feature selection, learning of the classifica-
tion model, and categorization of a new document. Documents are represented
as bag-of-words (where each term is associated to its frequency in the docu-
ment). In general, two alternatives can be considered [1]: i) the same feature
space is used to represent documents belonging to all categories or ii) several
specific feature spaces are used to represent documents belonging to different
categories. In WebClassIII an intermediate solution is adopted. In particular,
for each category, a different document representation is used to decide which
subcategory (temporary represented in the same feature space of its parent) is
the most appropriate for a given document.

In the learning phase, starting from the root, the system builds a classification
model for each category c. When c has only a subcategory, a dummy subcategory
is introduced. The training documents associated to the dummy subcategory are
those associated only to c (and not to the subcategory). Therefore, the sum of
probabilities of all the direct subcategories of c is not necessarily 1.0, since the
probability that the document does not belong to any subcategory should be
taken into account.

The classification phase is performed in a top-down fashion from the root
to the leaves, according to a greedy strategy. When the document reaches an
internal category c, it is represented on the basis of the feature set associated to
c and the system computes a score for each direct subcategory (dummy categories
are not considered during the classification), according to the classification model
learned on c. The document is associated to the subcategory with the highest
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score above a precomputed threshold (one for each category, see [4] for details).
The search proceeds recursively from that subcategory, until no score is greater
than the corresponding threshold or a leaf category is reached. The first case
mainly happens when the document deals with a general rather than a specific
topic or when the document belongs to a specific category which does not appear
in the hierarchy. If the search stops at the root, then the document is marked as
unclassified.

In the following, we report some details about the identification of an ap-
propriate subset of terms (dictionary) for representing documents belonging to
each category, which are then extended in order to exploit correlations among
categories.

In particular, documents are initially tokenized, and the set of tokens is
filtered in order to remove HTML tags, punctuation marks, numbers and tokens
with less than three characters. After tokenization, two standard pre-processing
methods are applied, that are stopword removal (based on words in Glimpse [9])
and stemming (using Porter algorithm [12]).

WebClassIII associates each category with a subset of words which best rep-
resent documents of that category. In particular, each word wi,c′ that appears
in at least a document of the category c′ (direct subcategory of c), WebClassIII
computes a weight vi,c′ and builds a dictionary Dictc′ containing ndict words
with the highest weight. The weight vi,c′ is computed as follows:

vi,c′ = TFc′(wi)×DF 2
c′(wi)×

1

CFc(wi)
(1)

where:

– TFc′(w) is the maximum term frequency of w over the documents belonging
to the category c′;

– DFc′(w) is the document frequency computed as the percentage of documents
of category c′ in which w occurs;

– CFc(w) is the category frequency computed as the number of direct subcat-
egories of c having at least a document in which w occurs.

It is noteworthy that positive examples for c′ are sufficient for the compu-
tation of TFc′(w) and DFc′(w), while the computation of CFc(w) also requires
the negative examples for c′.

The feature set associated to each category c, which is exploited for learning
the corresponding classifier, consists of the union of the dictionaries associated
to all the subcategories of c (called Hierarchical Feature Set in [5]).

3 Hierarchical Multidimensional Classification

In this Section, we describe MultiWebClass, an extension of WebClassIII which is
able to perform Hierarchical Multidimensional Classification. The most straight-
forward solution would consist in learning a classification model for each dimen-
sion independently. However, as discussed in Section 1, this solution is not able to
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Fig. 1. (a) Contingency matrix between two dimensions Dp and Dq. (b) Contingency
matrix between two categories cpi ∈ Dp and cqj ∈ Dq built using artificial categories.

catch possible correlations among categories belonging to different dimensions.
In MultiWebClass we adopt a different solution which first identifies possible
correlations among categories belonging to different dimensions and then ex-
ploit such correlations in order to extend the feature sets used in the learning
phase so to improve predictive performances. In the following subsections, we
describe the proposed approach.

3.1 Discovery of correlations between categories

The identification of correlations between two variables is a common task in
statistics which is usually solved by means of a contingency matrix, where rows
and columns represent the values of the first and the second variables, respec-
tively. Inspired by this commonly used solution, we use the same strategy for
categories. In particular, we build a contingency matrix as shown in Figure 1(a),
where:

– the variables on rows and columns represent two classification dimensions
Dp = {cp1, c

p
2, . . . , c

p
n} and Dq = {cq1, c

q
2, . . . , c

q
m}, where cpi is the i-th category

of the p-th dimension;
– each cell value Tij represents the number of documents labeled as both the

categories cpi and cqj in the training set;
– Tr(cpi ) represents the set of training documents labeled as cpi in the hierarchy

of the p-th dimension.

Starting from such contingency matrix, we construct a further 2 × 2 contin-
gency matrix for each pair of categories cpi , c

q
j belonging to different dimensions

(p 6= q) as shown in Figure 1(b). In this matrix, we build two artificial categories
¬cpi ,¬c

q
j which consist of all the documents not belonging to cpi and cqj , respec-

tively. Obviously, we exclude root categories when computing such contingency
matrices.
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The correlation between two categories can be symmetric or not, on the
basis of the considered correlation measure. In this work, we exploit a variant
of the Confidence measure [15]. Such measure is asymmetric and is defined as
γ(cpi , c

q
j) = f11

f10
and γ(cqj , c

p
i ) = f11

f01
, where f11, f10 and f01 are the values of the

contingency matrix between cpi and cqj (see Figure 1(b)). This measure is actually
a frequency-based estimation of the probability that documents belonging to cpi
also belong to cqj (or vice versa). This measure, however, can lead to unreliable
probabilities in the case that very few documents are used for its computation.
To overcome this issue, we consider f11

f10
(and f11

f01
) as a proportion in a statistical

population and we use the Wilson confidence interval [17] in order to make
conservative decisions about the presence of a correlation. We use the Wilson
score interval since it directly derives from the Pearson’s chi-squared test with
two cases (here the two cases for f11

f10
are: a document that belongs to cpi also

belongs to cqj or not). Formally, the Wilson score interval for f11
f10

is defined as:

[
f11+

z20
2

f10+z2
0
−

√
f10z0

f10+z2
0

√
f11f12
f2
10

+
z2
0

4f10
,

f11+
z20
2

f10+z2
0

+
√
f10z0

f10+z2
0

√
f11f12
f2
10

+
z2
0

4f10

]
(2)

where z0 is the Z-score value (according to the normal distribution) for a given
confidence 1− α.

Since we are interested in making conservative decisions about the presence
of a correlation, we consider the lower bound of this interval as the probability
that cpi and cqj are correlated:

γ(cpi , c
q
j) =

f11 +
z2
0

2

f10 + z20
−
√
f10z0

f10 + z20

√
f11f12
f210

+
z20

4f10
(3)

Due to the asymmetry of the considered correlation measure, as shown in
Algorithm 1, we pair-wisely search for correlations between two categories be-
longing to two different dimensions Dp and Dq in both the directions Dp → Dq

and Dq → Dp. Note that we are only interested in the discovery of positive
correlations (i.e., a given category on a dimension possibly implies a category in
another dimension). For this reason, we do not consider the proportions f21/f01
and f12/f10. Moreover, since we are only interested to highly correlated pairs of
categories, we consider as correlated two categories cpi and cqj only if γ(cpi , c

q
j) > β,

where β is a user-defined threshold.
Finally, since we use the correlations to extend the feature sets and we use

hierarchical feature sets (this aspect will be clarified in the next subsection), if
the correlation cpi → cqj is identified, then it is possible to prove that, for each
cqk ∈ ancestors(cqj), there exists the correlation cpi → cqk. This can be easily
proved by observing Equation (3). Indeed, for each cqk ∈ ancestors(c

q
j) we have

that γ(cpi , c
q
k) ≥ γ(cpi , c

q
j). This directly follows from the following observations:

– f01 has the same value in both γ(cpi , c
q
k) and γ(cpi , c

q
j), since it is the number

of documents labeled as cpi ;
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Algorithm 1: Discovery of correlations among categories

input : The set of dimensions D = {D1, D2, . . . , Ds};
a correlation measure γ(·, ·);
a threshold β to consider a discovered correlation as relevant.

output: correlations = {〈c, CorrelatedSetc〉}c, where CorrelatedSetc is the
set of categories d, s.t. exists the correlation c→ d.

1 correlations← ∅;
2 for all pairs of dimensions Dp, Dq do
3 correlations← correlations ∪ findCorrelations(Dp, Dq, β);
4 correlations← correlations ∪ findCorrelations(Dq, Dp, β);

5 return correlations;

6 findCorrelations(Dp, Dq, β)
7 correlations← ∅;
8 exploredPairs← ∅;
9 for cpi ∈ Dp in pre-order do

10 correlatedSet← ∅;
11 for cqj ∈ Dq in post-order do

12 if 〈cpi , c
q
j〉 /∈ exploredPairs and γ(cpi , c

q
j) ≥ β then

13 correlatedSet← correlatedSet ∪ {cqj};
// Skip the exploration of ancestors of cqj

14 for cqk ∈ ancestors(c
q
j) and cqk 6= root(Dq) do

15 exploredPairs← exploredPairs ∪ {〈cpi , c
q
k〉};

16 correlatedSet← correlatedSet ∪ {cqk};

17 correlations← correlations ∪ {〈cpi , correlatedSet〉};
18 return correlations;

– f12 has the same value in both γ(cpi , c
q
k) and γ(cpi , c

q
j), since it is the number

of documents which are not labeled as cpi ;
– f11 for γ(cpi , c

q
k) is greater than or equal to f11 for γ(cpi , c

q
j), since cqk contains

documents in cqj .

In order to take into account this property, we visit the first hierarchy in
pre-order and the second hierarchy in post-order. The effect is a reduction of the
number of correlations between pairs of categories to be evaluated (see Algorithm
1, lines 14-16).

3.2 Exploiting discovered correlations

As shown in Section 2, in WebClassIII, the feature set associated to each category
is the union of the dictionaries of its subcategories. In this work, we exploit the
discovered correlations to extend the feature set of some categories. In particular,
given a discovered correlation cpi → c′qj (where c′qj is a subcategory of cqj), we



8 F. Serafino, G. Pio, M. Ceci, D. Malerba

(a) (b)

Fig. 2. Feature set extension FSE I, when (a) cpi is a leaf and when (b) cpi is not a leaf.
Red arrows indicate correlations, while blue arrows indicate feature set extension.

extend the feature sets of the involved categories according to two different
strategies:

– FSE I: Category Dictionaries. This strategy extends the feature set of
the category cqj by including features in the dictionaries of categories in the
dimension Dp:

• When cpi is a leaf, then the feature set of the category cqj is extended by
including the top-k (k < ndict) terms of the dictionary associated cpi (see
Figure 2(a));

• When cpi is not a leaf, the feature set of the category cqj is extended
by including the top-k (k < ndict) terms from the dictionaries of the
subcategories of cpi (see Figure 2(b)).

The top-k terms are selected according to Equation 1. The rationale behind
this strategy is to use, in the classifier associated to cqj , some of the fea-
tures that the classifier associated to cpi uses to discriminate among its child
categories.

– FSE II: Correlated Words. This strategy works similarly to FSE I, but
adds a different set of terms to the feature set of cqj . In particular, the top-k
(k < ndict) words, according to Equation 1, are those that appear in the
feature sets of both cpi and c′qj , but not to cqj . Note that the feature selection
algorithm implemented in WebClassIII could have pruned some features of
c′qj when building the feature set of cqj . This strategy could restore such
features because of the presence of the correlation.

FSE II is more conservative than FSE I since it uses, for feature extension,
features extracted from the same dimension. On the contrary, since FSE I incor-
porates in one dimension features coming from a completely different dimension,
it is more “daring”, but can also incur into errors (possibly) coming from unre-
lated features.
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4 Experiments

The experimental evaluation has been performed using, in WebClass, the Näıve
Bayes classification algorithm which was proved to perform the best among those
implemented in the framework [5]. For evaluation purposes, we consider both real
and synthetically generated datasets. Since we are interested in the evaluation
of the contribution given by the exploitation of the correlations, in this work
the results obtained with both the proposed feature set extension strategies
introduced in MultiWebClass (i.e., FSE I and FSE II) are compared only with
the results obtained by WebClass III. This because WebClass III does not exploit
correlations among different hierarchies and represents the non-multidimensional
counterpart of the approach we propose.

4.1 Datasets

Real dataset. The evaluation on real data has been performed on the dataset
Reuters Corpora Volume 1 (RCV1) [8]. It contains more than 800,000 stories
collected by the international news agency Reuters from 20th August 1996 to
19th August 1997. News are manually labeled according to the following three
classification dimensions:

– Topic: the main subject of a story (hierarchically organized);
– Industry : the type of business discussed in a story (hierarchically organized);
– Region: a geographic location or an economic/political group (not hierarchi-

cally organized).

The training and testing sets are obtained according to [8], i.e., by selecting
documents published from 20th August 1996 to 31st August 1996 as training
set, and documents published from 1st September 1996 to 19th August 1997
as testing set. Coherently with [5], we considered only documents associated to
a single category. The result is a set of 4,517 training documents and 146,248
testing documents.

Synthetic datasets. The evaluation on synthetic data has been performed by
means of the 5 fold cross validation approach on a set of datasets generated by
simulating the presence of correlations among categories belonging to different
dimensions. In particular, the generation of the datasets takes into account the
following aspects:

– Dimensions. The set of dimensions D is created using as parameters: the
number of dimensions s, the tree depth and the degree of nodes. Each di-
mension is represented as a full and perfectly-balanced tree.

– Dictionaries. Each leaf category is associated with a fixed number of terms
(50 in our experiments) randomly selected from the Ispell American English1

dictionary, whereas each internal category is associated with the dictionary
obtained as the union of the terms selected for its subcategories.

1 http://fmg-www.cs.ucla.edu/geoff/ispell-dictionaries.html
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– Document Generation. For each category c, a set of dc documents is gen-
erated. Each document consists of a set of t terms, randomly selected from
the dictionary associated to c, and a set of tg general terms randomly taken
from the Ispell American English dictionary. The complete set of documents
belonging to the category c is then obtained as the union of the dc docu-
ments (properly) belonging to c and the set of documents belonging to its
subcategories.

– Correlation Injection. Correlations are injected between pairs of categories
belonging to different dimensions. Injection is performed by labeling docu-
ments belonging to a category of a given dimension also with a given cate-
gory of another dimension. The system takes an input parameter ncorr which
represents the number of correlations to inject into leaf categories, whereas
correlations between internal categories are injected in a bottom-up fashion.
In particular, for each correlation cpi → cqj injected at l-th level, we intro-
duce a correlation father(cpi ) → father(cqj) at (l − 1)-th level. In order to
avoid the injection of several and redundant correlations involving the same
internal categories, only the most frequent correlations are preserved. The
percentage of correlations to preserve is given by the user-defined parameter
CorrRatio.

We generated all the synthetic datasets with the following parameters: s = 3
(i.e., 3 hierarchically organized classification dimensions), degree = 2 (i.e., each
internal node has 2 children), ncorr = 20 (i.e., for each pair of dimensions, we
inject a correlation for 20 randomly selected pairs of leaf categories) and Cor-
rRatio = 0.40 (i.e., we preserve the top-40% most frequent correlations among
parent categories).

For each category, all the documents are generated by randomly selecting 80
terms from the dictionary of the category (i.e., t = 80) and 20 terms from the
Ispell American English dictionary (i.e., tg = 20). The number of hierarchical
levels (i.e., the parameter depth) and the number of documents dc for each cate-
gory are set to different values in order to generate different synthetic datasets.
In particular, we generated five different datasets, that are:

– 4-20, which has 4 hierarchical levels and 20 documents for each category;

– 4-30, which has 4 hierarchical levels and 30 documents for each category;

– 4-40, which has 4 hierarchical levels and 40 documents for each category;

– 4-50, which has 4 hierarchical levels and 50 documents for each category;

– 3-40, which has 3 hierarchical levels and 40 documents for each category.

While the results obtained on the datasets 4-20, 4-30, 4-40 and 4-50 are com-
pared in order to analyze the performance by varying the number of documents
for each category, results obtained on the datasets 3-40 and 4-40 are compared
in order to obtain a preliminary analysis on the sensitiveness of the algorithm
to the complexity of the hierarchical structure of each classification dimension.
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4.2 Experimental Setting

In the following, we report some details about the parameter setting of Multi-
WebClass. In particular, we set the confidence value 1−α to 0.95. Consequently,
the Z-score value is z0 = 1.96. The threshold value β has been set to 0.3. ndict
(size of dictionaries) is set to 25, which provided good results in WebClassIII.
The number of terms k, propagated by the proposed strategies for feature set
extension is set to 20 (coherently with ndict).

As regards the classification dimensions, we considered the Topic dimension
for RCV1 (which is typically used for classification purposes [13]), exploiting the
correlations with the other two dimensions (i.e., Industry and Region) and the
first dimension for the synthetic datasets, exploiting the correlations with the
other two dimensions2.

The comparison between WebClassIII and MultiWebClass has been per-
formed according to five evaluation measures, that are:

– Accuracy, which is the percentage of correctly classified documents;
– Generalization Error, which is the percentage of documents classified as a

super-category of the correct category;
– Specialization Error, which is the percentage of documents classified into a

subcategory of the correct category;
– Misclassification Error, which is the percentage of documents classified as a

category which is in a different path with respect to the correct category in
the hierarchy;

– Unknown Ratio, which is the percentage of documents that are not classified
(actually classified in the root category of the hierarchy).

Intuitively, the sum of all the considered measures is always equal to 1.

4.3 Results

According to the experimental setting, in this section we report the results ob-
tained with all the considered datasets and perform three different analyses on:

– synthetic datasets with a fixed depth of the hierarchies (i.e., depth = 4) and a
different number of documents for each category (i.e., dc = {20, 30, 40, 50});

– synthetic datasets with a fixed number of documents for each category (i.e.,
dc = 40) and different depths of the hierarchies (i.e., depth = {30, 40});

– real data, i.e., on the RCV1 dataset.

Synthetic datasets with fixed depth. Results for this analysis are reported
in Table 1. As it can be observed from the table, all the considered approaches
were able to make at least a decision in the root node, i.e., the Unknown Ratio
is 0. Moreover, by observing the Misclassification Error, we can see that all the
systems were almost always able to consider the correct path in the hierarchy.

2 In the case of synthetic datasets, results do not depend on the specific dimension.
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Dataset 4-20

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.759 0.168 0.073 0.000 0.000

MWC - FSE II 0.764 0.217 0.019 0.000 0.000

WebClass III 0.685 0.246 0.069 0.000 0.000

Dataset 4-30

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.795 0.153 0.052 0.000 0.000

MWC - FSE II 0.751 0.162 0.087 0.000 0.000

WebClass III 0.698 0.245 0.057 0.000 0.000

Dataset 4-40

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.731 0.261 0.008 0.000 0.000

MWC - FSE II 0.711 0.229 0.030 0.030 0.000

WebClass III 0.676 0.245 0.079 0.000 0.000

Dataset 4-50

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.829 0.099 0.072 0.000 0.000

MWC - FSE II 0.715 0.147 0.138 0.000 0.000

WebClass III 0.727 0.247 0.026 0.000 0.000

Table 1. Classification results of synthetic dataset 4-20, 4-30, 4-40 and 4-50 on the
first dimension.

The main differences can be observed in the other three measures. In particular,
FSE I always leads to better accuracy values when the number of documents
per category increases (i.e., dc > 20). This approach also obtains good results
in terms of Generalization Error, sometimes at the cost of a slightly higher Spe-
cialization Error, which confirms that FSE I generally leads to less conservative
decisions, if compared to FSE II. Overall, by comparing the results obtained by
FSE I and FSE II with those obtained by WebClassIII, it is possible to see that
the exploitation of the discovered correlations leads to better results.

Synthetic datasets with different depth. This analysis aims at evaluating
the performance with respect to the depth of the hierarchy. Results are reported
in Table 2. As expected, the higher the complexity of the classification hierarchy,
the lower the classification accuracy. However, the proposed approaches always
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lead to better results. A more detailed analysis reveals that, as expected, moving
from 3 to 4 levels in the hierarchy leads to reduce the advantage of the MultiWe-
bClass with respect to WebClassIII (percentage gain in accuracy changes from
9.3% to 8.1% in the case of FSE I). As regards the specific error measures, we can
observe that all the systems generally prefer to make Generalization Errors with
respect to Specialization Errors when the complexity of the hierarchy increases.

Dataset 3-40

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.834 0.129 0.037 0.000 0.000

MWC - FSE II 0.833 0.131 0.036 0.000 0.000

WebClass III 0.763 0.169 0.068 0.000 0.000

Dataset 4-40

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.731 0.261 0.008 0.000 0.000

MWC - FSE II 0.711 0.229 0.030 0.030 0.000

WebClass III 0.676 0.245 0.079 0.000 0.000

Table 2. Classification results of synthetic dataset 3-40 and 4-40 on the first dimension.

Real Data. Finally, we compare the results obtained with MultiWebClass and
WebClassIII on RCV1. Results are reported in Table 3.

From the results we can see that, differently from what we observed for
synthetic datasets, Unknown Ratio is nonzero. This because, contrary to the
synthetic datasets, testing set contains documents that do not come from the
same data distribution of training documents. However, despite higher Unknown
Ratio, FSE II obtains better results in terms of Accuracy, Generalization Error,
Specialization Error and Misclassification Error. This confirms the more con-
servative nature of FSE II, which makes more accurate predictions and avoids
wrong decisions when the degree of uncertainty is high. This general behavior
can suggest us the use of FSE II when we would like to obtain a more accurate
classification, at the price of some unclassified instances, whereas FSE I (and, in
some cases, the original WebClass III) is more appropriate when we want to force
classification (reducing Unknown Ratio), at the price of a higher Specialization
Error. This observation does not hold for synthetic datasets since the unknown
ratio is always zero due to the considerations about data distribution reported
before.

In Table 4, we show some correlations discovered by our approach and used
for feature set extension. It is noteworthy that most of them appear reason-
able. For example, some regions which are usually subject to political issues
are correlated to the topic Government/Social. Moreover, some regions whose
economy is based on some specific business activities are correlated to the topic
Corporate/Industrial.
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Reuters RCV1

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.559 0.141 0.003 0.087 0.210

MWC - FSE II 0.566 0.129 0.002 0.078 0.225

WebClass III 0.561 0.188 0.003 0.101 0.147

Table 3. Classification results of RCV1 on the dimension Topic.

Source category Target category Correlation Strength

Region.Cyprus Topic.Government/Social 0.51841

Region.EuropeanUnion Topic.EuropeanCommunity 0.51322

Region.Macedonia Topic.Government/Social 0.46769

Industry.PortsAndShippingServices Topic.Corporate/Industrial 0.42569

Region.Ghana Topic.EquityMarkets 0.42438

Region.Malawi Topic.Government/Social 0.35930

Region.Syria Topic.Government/Social 0.35479

Region.Bahrain Topic.Government/Social 0.35027

Region.Jamaica Topic.Corporate/Industrial 0.34238

Region.Malta Topic.Government/Social 0.32404

Industry.PortsAndShippingServices Topic.Capacity/Facilities 0.31651

Region.CzechRepublic Topic.Markets 0.30804

Region.UnitedArabEmirates Topic.Government/Social 0.30070

Table 4. Correlations discovered on RCV1 with correlation strength greater than 0.3.

5 Conclusions and Future Work

In this paper we tackled the Hierarchical Multidimensional Classification task
and presented, at this purpose, the system MultiWebClass. In particular, Mul-
tiWebClass discovers correlations between categories belonging to different hi-
erarchies and exploits them by extending (according to two different strategies)
the feature sets used for learning classifiers.

Results on both synthetic and real datasets show that the exploitation of the
discovered correlations, which appear reasonable after a quick qualitative analy-
sis, can lead to better classification performances in terms of accuracy. Moreover,
the different strategies proposed for feature set extension appear appropriate for
different goals (i.e., higher accuracy vs higher number of classified instances),
since they have a different degree of conservativeness when making decisions.

For future work, we intend to deeply analyze the sensitiveness of MultiWeb-
Class to different parameter settings. We will also consider additional strategies
for exploiting the discovered correlations, possibly including negative correla-
tions. Moreover, inspired by the work in [3], we will explore the task of mul-
tidimensional hierarchical classification in the transductive setting. Finally, we
intend to perform experiments on additional real-world datasets, also related to
different application domains (e.g., biological data).
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